首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
LEAFY同源基因研究进展   总被引:3,自引:0,他引:3  
LEAFY(LFY)同源基因存在于所有的陆生植物中,在植物花发育早期表达,并在花发育过程中抑制茎端分生组织的营养生长,调控花分生组织和花器官的形成,使转LFY基因植株提前开花,LFY同源基因与其上下游基因共同调控花发育过程.LFY同源基因的蛋白质结构在不同物种间保守性很高,但它们的表达部位差异很大.该文总结了近年来国内外已经克隆到的LFY同源基因的表达、功能及其在果树、花卉、粮食作物上的应用,以期为植物花发育的深入研究提供参考.  相似文献   

2.
根据NCBI中蝴蝶兰LFY花序分生组织基因序列设计2对引物,用RT-PCR法从蝴蝶兰花芽中扩增出LFY基因,对扩增产物进行克隆和测序.结果表明,获得的蝴蝶兰LFY基因约为1500 bp,与报道序列同源性达98.71%.将LFY基因插入pRI101-ON载体中,经PCR、双酶切及测序鉴定,证实重组表达质粒中含有目的片段,表明成功构建了高效植物表达载体pRI1O1-LFY.  相似文献   

3.
拟南芥LEAFY基因在花发育中的网络调控及其生物学功能   总被引:15,自引:0,他引:15  
王利琳  梁海曼  庞基良  朱睦元 《遗传》2004,26(1):137-142
重点综述了拟南芥花分生组织特征基因——LEAFY(LFY)基因及其同源基因在花发育中的网络调控及其生物学功能。LFY基因广泛表达于高等植物的营养性和生殖性组织。LFY基因需要与其他基因相互作用,並且表达量达到一定水平时才能促进成花。LFY基因处于成花调控网络的关键位置,不仅调控开花时间和花转变,而且在花序和花的发育中也起重要作用。碳源、植物激素等因子直接或间接地影响LFY基因的表达和作用。提示通过掌握LFY基因的表达调控规律进一步探讨成花机理的可行性。 Abstract:Recent research progress on regulation network and biological roles of LFY gene in Arabidopsis thaliana and its homologue genes in floral development are reviewed emphatically in the present paper.LFY gene expresses widely in both vegetative and reproductive tissues in different higher plants,therefore investigation on role of LFY gene on flowering is of general significance.LFY gene plays an important role to promote flower formation by interaction and coordination with other genes,such as TFL,EMF,AP1,AP2,CAL,FWA,FT,AP3,PI,AG,UFO,CO,LD,GA1 etc,and a critical level of LFY expression is essential.LFY gene not only controls flowering-time and floral transition,but also plays an important role in inflorescence and floral organ development.It was situated at the central site in gene network of flowering regulation,positively or negatively regulates the level or activities of flowering-related genes.Some physiological factors,such as carbon sources,phytohormones,affect directly or indirectly the expression and actions of LFY gene.This indicates that level of LFY expression can also be regulated with physiological methods.It is probable that we can explain the principal mechanism of flowering by regulation network of LFY gene.  相似文献   

4.
植物FLOWERING LOCUS T/TERMINAL FLOWER1基因家族的研究进展   总被引:2,自引:0,他引:2  
植物FLOWERING LOCUS T/TERMINAL FLOWER1(FT/TFL1)基因家族是一个进化上高度保守的基因家族,它在植物的花发育过程中具有重要作用:其成员FT基因编码的蛋白产物是可以长距离转运的成花激素,在花形成过程中起关键作用;另一成员TFL1基因则在花序的形成和维持过程中起重要作用.本文就近年来国内外对植物FT/TFL1基因家族的结构、成员,以及各个成员在花发育转换过程中的功能等研究现状进行综述,并对该基因家族的研究前景提出展望.  相似文献   

5.
植物花发育的分子机理研究进展   总被引:1,自引:0,他引:1  
张云  刘青林 《植物学报》2003,20(5):589-601
花的发育分为开花决定、花的发端和花器官的发育三个阶段。植物开花由多条途径诱导,包括光周期和光质诱导、春化作用、自主途径、赤霉素诱导、碳水化合物诱导等;植物体本身也存在着开花抑制途径。各种开花诱导途径能激活花分生组织特性基因,使茎端分生组织转变为花分生组织。花器官的发育由器官特性基因决定,这些基因的精确表达需要花分生组织特性基因的激活和多个正、负调节因子的调控;另有一类基因控制着花发育的对称性。花发育机理的研究具有重要的理论意义和广泛的应用前景。  相似文献   

6.
植物花发育的分子机理研究进展   总被引:8,自引:1,他引:7  
张云  刘青林 《植物学通报》2003,20(5):589-601
花的发育分为开花决定、花的发端和花器官的发育三个阶段。植物开花由多条途径诱导,包括光周期和光质诱导、春化作用、自主途径、赤霉素诱导、碳水化合物诱导等;植物体本身也存在着开花抑制途径。各种开花诱导途径能激活花分生组织特性基因,使茎端分生组织转变为花分生组织。花器官的发育由器官特性基因决定,这些基因的精确表达需要花分生组织特性基因的激活和多个正、负调节因子的调控;另有一类基因控制着花发育的对称性。花发育机理的研究具有重要的理论意义和广泛的应用前景。  相似文献   

7.
木本植物开花调节基因的分离克隆及其童期控制   总被引:8,自引:0,他引:8  
高等植物在萌发后需要经历一定时间的营养生长 ,即童期 ,才能进入生殖发育阶段。控制植物生殖转变调节童期的基因主要有花序分生组织特异基因、花分生组织特异基因、花器官分生组织特异基因。对近几年木本植物开花调节基因的分离克隆及其童期控制研究进行综述 ,对了解木本植物开花基因的作用功能 ,以及缩短童期和植物进化研究将有所裨益。  相似文献   

8.
植物AP1基因研究进展(综述)   总被引:2,自引:0,他引:2  
AP1(APETALA1)基因属于植物花分生组织特征基因和花器官形态特征基因,在控制植物花分生组织特性与花器官的形成过程中起着重要的作用。本文综述了近年来植物AP1基因结构、功能、表达调节及其与物种进化关系研究的新进展,并对其在果树上的应用研究进行分析和展望。  相似文献   

9.
以‘翠冠’梨为研究材料,对枝条进行90°拉枝处理,探明拉枝对梨成花及其相关基因(LFY、TFL1和FT)的表达以及内源激素和营养物质含量的影响。结果表明:(1)90°拉枝处理能够大幅度提高‘翠冠’梨的成花率。(2)与不拉枝处理相比,90°拉枝处理的花芽分化促进类激素——玉米素(ZT)和脱落酸(ABA)的含量上升,花芽分化抑制类激素——赤霉素(GA3)和生长素(IAA)的含量下降,可溶性糖含量和淀粉含量在花芽分化期间大量积累,全氮含量(N)下降,C/N比显著提高,且成花促进基因(LFY和FT)的表达量上升,成花抑制基因(TFL1)的表达量下降。(3)相关分析显示,LFY、FT基因表达量与ZT、ABA含量呈显著正相关关系,与GA3、IAA含量呈显著负相关关系,与可溶性糖含量、淀粉含量和C/N比呈显著正相关关系,与全氮含量呈显著负相关关系,而TFL1基因表达量与LFY、FT基因表达量呈显著负相关关系。研究认为,拉枝处理通过提高成花过程中花芽分化促进类内源激素含量和营养物质含量,上调成花促进基因表达水平,以及这些指标间相互影响共同调控提高‘翠冠’梨成花率。  相似文献   

10.
细胞分裂素对拟南芥(Arabidopsis thaliana)花分生组织细胞的分裂和分化具有重要作用。本研究利用APETALA1(AP1)特异启动子在花分生组织和第1、2轮花器官中表达细胞分裂素合成酶(isopentyl transferase,IPT)基因IPT4,研究细胞分裂素对花和花器官发育的影响。在pAP1∷IPT4转基因植株中出现了花密集和花器官数目增多等现象。原位杂交和GUS组织染色结果发现,在pAP1∷IPT4转基因植株中,花分生组织特征决定基因LEAFY(LFY)与花器官特征决定基因AP1、PISTILLATA(PI)和AGAMOUS(AG)的表达量均有不同程度的提高。研究结果表明在拟南芥中表达pAP1∷IPT4影响其花和花器官的正常发育。  相似文献   

11.
In Arabidopsis, floral meristems arise in continuous succession directly on the flanks of the inflorescence meristem. Thus, the pathways that regulate inflorescence and floral meristem identity must operate both simultaneously and in close spatial proximity. The TERMINAL FLOWER 1 (TFL1) gene of Arabidopsis is required for normal inflorescence meristem function, and the LEAFY (LFY), APETALA 1 (AP1), and APETALA 2 (AP2) genes are required for normal floral meristem function. We present evidence that inflorescence meristem identity is promoted by TFL1 and that floral meristem identity is promoted by parallel developmental pathways, one defined by LFY and the other defined by AP1/AP2. Our analysis suggests that the acquisition of meristem identity during inflorescence development is mediated by antagonistic interactions between TFL1 and LFY and between TFL1 and AP1/AP2. Based on this study, we propose a simple model for the genetic regulation of inflorescence development in Arabidopsis. This model is discussed in relation to the proposed interactions between the inflorescence and the floral meristem identity genes and in regard to other genes that are likely to be part of the genetic hierarchy regulating the establishment and maintenance of inflorescence and floral meristems.  相似文献   

12.
13.
Upon floral induction, the primary shoot meristem of an Arabidopsis plant begins to produce flower meristems rather than leaf primordia on its flanks. Assignment of floral fate to lateral meristems is primarily due to the cooperative activity of the flower meristem identity genes LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER. We present evidence here that AP1 expression in lateral meristems is activated by at least two independent pathways, one of which is regulated by LFY. In lfy mutants, the onset of AP1 expression is delayed, indicating that LFY is formally a positive regulator of AP1. We have found that AP1, in turn, can positively regulate LFY, because LFY is expressed prematurely in the converted floral meristems of plants constitutively expressing AP1. Shoot meristems maintain an identity distinct from that of flower meristems, in part through the action of genes such as TERMINAL FLOWER1 (TFL1), which bars AP1 and LFY expression from the influorescence shoot meristem. We show here that this negative regulation can be mutual because TFL1 expression is downregulated in plants constitutively expressing AP1. Therefore, the normally sharp phase transition between the production of leaves with associated shoots and formation of the flowers, which occurs upon floral induction, is promoted by positive feedback interactions between LFY and AP1, together with negative interactions of these two genes with TFL1.  相似文献   

14.
Wooding S  Rogers A 《Genetics》2002,160(4):1641-1650
The floral developmental pathway in Arabidopsis thaliana is composed of several interacting regulatory genes, including the inflorescence architecture gene TERMINAL FLOWER1 (TFL1), the floral meristem identity genes LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER (CAL), and the floral organ identity genes APETALA3 (AP3) and PISTILLATA (PI). Molecular population genetic analyses of these different genes indicate that the coding regions of AP3 and PI, as well as AP1 and CAL, share similar levels and patterns of nucleotide diversity. In contrast, the coding regions of TFL1 and LFY display a significant reduction in nucleotide variation, suggesting that these sequences have been subjected to a recent adaptive sweep. Moreover, the promoter of TFL1, unlike its coding region, displays high levels of diversity organized into two distinct haplogroups that appear to be maintained by selection. These results suggest that patterns of molecular evolution differ among regulatory genes in this developmental pathway, with the earlier acting genes exhibiting evidence of adaptive evolution.  相似文献   

15.
The transition from vegetative to reproductive phases during Arabidopsis development is the result of a complex interaction of environmental and endogenous factors. One of the key regulators of this transition is LEAFY (LFY), whose threshold levels of activity are proposed to mediate the initiation of flowers. The closely related APETALA1 (AP1) and CAULIFLOWER (CAL) meristem identity genes are also important for flower initiation, in part because of their roles in upregulating LFY expression. We have found that mutations in the FRUITFULL (FUL) MADS-box gene, when combined with mutations in AP1 and CAL, lead to a dramatic non-flowering phenotype in which plants continuously elaborate leafy shoots in place of flowers. We demonstrate that this phenotype is caused both by the lack of LFY upregulation and by the ectopic expression of the TERMINAL FLOWER1 (TFL1) gene. Our results suggest that the FUL, AP1 and CAL genes act redundantly to control inflorescence architecture by affecting the domains of LFY and TFL1 expression as well as the relative levels of their activities.  相似文献   

16.
Flowering is a major developmental phase change that transforms the fate of the shoot apical meristem (SAM) from a leaf-bearing vegetative meristem to that of a flower-producing inflorescence meristem. In Arabidopsis, floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)–FD complex and the flower meristem identity gene, LEAFY ( LFY ). Two redundant functioning homeobox genes, PENNYWISE ( PNY ) and POUND-FOOLISH ( PNF ), which are expressed in the vegetative and inflorescence SAM, regulate patterning events during reproductive development, including floral specification. To determine the role of PNY and PNF in the floral specification network, we characterized the genetic relationship of these homeobox genes with LFY and FT . Results from this study demonstrate that LFY functions downstream of PNY and PNF. Ectopic expression of LFY promotes flower formation in pny pnf plants, while the flower specification activity of ectopic FT is severely attenuated. Genetic analysis shows that when mutations in pny and pnf genes are combined with lfy , a synergistic phenotype is displayed that significantly reduces floral specification and alters inflorescence patterning events. In conclusion, results from this study support a model in which PNY and PNF promote LFY expression during reproductive development. At the same time, the flower formation activity of FT is dependent upon the function of PNY and PNF.  相似文献   

17.
Molecular studies were conducted on Metrosideros excelsa to determine if the current genetic models for flowering with regard to inflorescence and floral meristem identity genes in annual plants were applicable to a woody perennial. MEL , MESAP1 and METFL1 , the fragments of LEAFY ( LFY ), APETALA1 ( AP1 ) and TERMINAL FLOWER1 ( TFL1 ) equivalents, respectively, were isolated from M. excelsa . Temporal expression patterns showed that MEL and MESAP1 exhibited a bimodal pattern of expression. Expression exhibited during early floral initiation in autumn was followed by down-regulation during winter, and up-regulation in spring as floral organogenesis occurred. Spatial expression patterns of MEL showed that it had greater similarity to FLORICAULA ( FLO ) than to LFY , whereas MESAP1 was more similar to AP1 than SQUAMOSA . The interaction between MEL and METFL1 was more similar to the interaction between FLO and CENTRORADIALIS than that between LFY and TFL1 . Consequently, the three genes from M. excelsa fit a broader herbaceous model encompassing Antirrhinum as well as Arabidopsis , but with differences, such as the bimodal pattern of expression seen with MEL and MESAP1 . In mid-winter, at the time when both MEL and MESAP1 were down-regulated, GA1 was below the level of detection in M. excelsa buds. Even though application of gibberellin inhibits flowering in members of the Myrtaceae, MEL was responsive to gibberellin with expression in juvenile plants up-regulated by GA3. However, MESAP1 was not up-regulated indicating that meristem competence was also probably required to promote flowering in M. excelsa .  相似文献   

18.
19.
Conti L  Bradley D 《The Plant cell》2007,19(3):767-778
Shoot meristems harbor stem cells that provide key growing points in plants, maintaining themselves and generating all above-ground tissues. Cell-to-cell signaling networks maintain this population, but how are meristem and organ identities controlled? TERMINAL FLOWER1 (TFL1) controls shoot meristem identity throughout the plant life cycle, affecting the number and identity of all above-ground organs generated; tfl1 mutant shoot meristems make fewer leaves, shoots, and flowers and change identity to flowers. We find that TFL1 mRNA is broadly distributed in young axillary shoot meristems but later becomes limited to central regions, yet affects cell fates at a distance. How is this achieved? We reveal that the TFL1 protein is a mobile signal that becomes evenly distributed across the meristem. TFL1 does not enter cells arising from the flanks of the meristem, thus allowing primordia to establish their identity. Surprisingly, TFL1 movement does not appear to occur in mature shoots of leafy (lfy) mutants, which eventually stop proliferating and convert to carpel/floral-like structures. We propose that signals from LFY in floral meristems may feed back to promote TFL1 protein movement in the shoot meristem. This novel feedback signaling mechanism would ensure that shoot meristem identity is maintained and the appropriate inflorescence architecture develops.  相似文献   

20.
Determination of Arabidopsis floral meristem identity by AGAMOUS.   总被引:18,自引:1,他引:17       下载免费PDF全文
Y Mizukami  H Ma 《The Plant cell》1997,9(3):393-408
Determinate growth of floral meristems in Arabidopsis requires the function of the floral regulatory gene AGAMOUS (AG). Expression of AG mRNA in the central region of floral meristems relies on the partially overlapping functions of the LEAFY (LFY) and APETALA1 (AP1) genes, which promote initial floral meristem identity. Here, we provide evidence that AG function is required for the final definition of floral meristem identity and that constitutive AG function can promote, independent of LFY and AP1 functions, the determinate floral state in the center of reproductive meristems. Loss-of-function analysis showed that the indeterminate central region of the ag mutant floral meristem undergoes conversion to an inflorescence meristem when long-day-dependent flowering stimulus is removed. Furthermore, gain-of-function analysis demonstrated that ectopic AG function results in precocious flowering and the formation of terminal flowers at apices of both the primary inflorescence and axillary branches of transgenic Arabidopsis plants in which AG expression is under the control of the 35S promoter from cauliflower mosaic virus. Similar phenotypes were also observed in lfy ap1 double mutants carrying a 35S-AG transgene. Together, these results indicate that AG is a principal developmental switch that controls the transition of meristem activity from indeterminate to determinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号