首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
利用谷氨酸转运体抑制剂制备选择性运动神经元损伤的脊髓片培养模型,在此基础上探讨Ⅱ相酶诱导剂5,6-二氢环戊烯并1,2-二硫杂环戊烯-3-硫酮(CPDT)对运动神经元的保护作用及机制.乳大鼠脊髓片分为正常对照组、THA模型组(100 μmol/L苏-羟天冬氨酸;THA)和Ⅱ相酶诱导剂CPDT干预组(15和30 μmol/L).通过免疫组化方法对脊髓腹角α运动神经元进行计数,并利用RT-PCR半定量方法,免疫印迹及酶活性检测等方法,分析各组间醌氧化还原酶1(NQO1)和铁蛋白重链的表达.结果表明CPDT(15或30 μmol/L)干预组脊髓腹角的运动神经元数明显增多,与THA模型组相比差异显著(P<0.05,P<0.01),并且经CPDT干预可以有效的诱导NQO1以及铁蛋白重链的表达增加,为下一步在肌萎缩侧索硬化(ALS))动物模型或ALS病人中进行临床干预打下了前期基础.  相似文献   

2.
观察谷氨酸转运体抑制剂苏-羟天冬氨酸(Threo-hydroxyaspartate,THA)对器官型培养的脊髓片的影响,探讨谷氨酸在运动神经元损伤中的作用。取出生后8天乳鼠的腰段脊髓组织切片做脊髓器官型培养,在培养液中加入不同浓度THA(50μmol/L、100μmol/L、500μmol/L),用神经元的特异性免疫组化染色剂SMI-32,非磷酸化神经丝标记物,对脊髓腹角α运动神经元进行鉴定,用单克隆抗钙网膜蛋白(calretinin)抗体对背角中间神经元进行记数,测定培养液中乳酸脱氨酶(LDH)的含量,并与对照组比较。结果显示对照组α运动神经元数目恒定,THA可以引起剂量依赖性的培养液中LDH含量增高和α运动神经元数目减少,而脊髓背角的中间神经元损伤相对较轻,其中THA100μmol/L组在体外培养4周后出现类似于肌萎缩侧索硬化(ALS)的病理改变:α运动神经元数目较对照组明显减少,而脊髓背角的中间神经元数目无显著变化。细胞外谷氨酸增高主要对运动神经元造成损伤,脊髓运动神经元较感觉神经元对谷氨酸的兴奋毒作用更加敏感。  相似文献   

3.
观察谷氨酸转运体抑制剂苏一羟天冬氨酸(Threo-hydroxyaspartate,THA)对器官型培养的脊髓片的影响,探讨谷氨酸在运动神经元损伤中的作用。取出生后8天乳鼠的腰段脊髓组织切片做脊髓器官型培养,在培养液中加入不同浓度THA(50μmol/L、100μmol/L、5001μmol/L),用神经元的特异性免疫组化染色剂SMI-32,非磷酸化神经丝标记物,对脊髓腹角α运动神经元进行鉴定,用单克隆抗钙网膜蛋白(calretinin)抗体对背角中间神经元进行记数,测定培养液中乳酸脱氢酶(LDH)的含量,并与对照组比较。结果显示对照组α运动神经元数目恒定,THA可以引起剂量依赖性的培养液中LDH含量增高和α运动神经元数目减少,而脊髓背角的中间神经元损伤相对较轻,其中THA100μmol/L组在体外培养4周后出现类似于肌萎缩侧索硬化(ALS)的病理改变:α运动神经元数目较对照组明显减少,而脊髓背角的中间神经元数目无显著变化。细胞外谷氨酸增高主要对运动神经元造成损伤,脊髓运动神经元较感觉神经元对谷氨酸的兴奋毒作用更加敏感。  相似文献   

4.
Li H  Jiao B  Yu ZB 《生理学报》2007,59(3):369-374
为研究模拟失重大鼠萎缩比目鱼肌强直收缩疲劳后恢复速率的影响因素,采用尾部悬吊模拟失重大鼠模型及离体骨骼肌条灌流技术,观测其在不同收缩模式下疲劳后的恢复过程。正常大鼠离体比目鱼肌条实验显示,10s短时程(S10P)与300s长时程(L10P)强直收缩轻度疲劳[强直收缩最大张力(P0)下降10%]后,在20min恢复期末,均可恢复至疲劳前P0,且恢复程度不受疲劳持续时间的影响;轻度疲劳后,在灌流液中加入10μmol/L钌红抑制肌浆网Ca^2+释放功能,恢复速率减慢,恢复程度最大仅至94%P0,然后呈下降趋势,提示轻度疲劳可能仅抑制肌原纤维功能。60s短时程(S50P)与300s长时程(L50P)强直收缩中度疲劳(P0下降50%)后,在20min恢复期末,收缩张力分别恢复至95%P0和90%P0,表明中度疲劳持续时间影响恢复的速率;相同条件中度疲劳后,在灌流液中加入5mmol/L咖啡因促进肌浆网Ca62+释放功能,恢复速率明显加快,无论疲劳持续时间长短,5min便可完全恢复,提示中度疲劳不仅抑制肌原纤维功能,还抑制肌浆网Ca^2+释放功能。尾部悬吊1周的大鼠比目鱼肌明显萎缩,其重量/体重之比仅为对照大鼠的60%。采用短与长持续时间的轻与中度疲劳作用后,在20min恢复期末,收缩张力分别恢复至94%P0(S10P)、95%P0(L10P)、92%P0(S50P)、84%P0(L50P),均与同步对照组有显著差异。以上结果提示:模拟失重1周大鼠萎缩的比目鱼肌,轻度与中度疲劳均可抑制肌原纤维功能与肌浆网Ca^2+释放功能,使恢复速率减慢。  相似文献   

5.
利用谷氨酸转运体抑制剂苏—羟天冬氨酸(THA)制备选择性运动神经元凋亡的肌萎缩侧索硬化(ALs)脊髓器官型培养模型。取出生后8天乳鼠腰段脊髓组织切成脊髓薄片,在培养液中分别加入不同浓度THA,用SMI—32免疫组化染色对脊髓腹角α运动神经元进行鉴定,calretinin免疫组化染色对背角中间神经元进行鉴定,测定培养液中谷氨酸(Glu)、乳酸脱氢酶(LDH)的含量,并与对照组比较。结果显示对照组α运动神经元数目恒定;THA引起培养液中剂量依赖性Glu、LDH含量增高和SMI—32阳性的α运动神经元数目减少,脊髓背角的中间神经元损伤相对较轻;100μmol/L THA组在体外培养4周后,细胞外Glu含量增高,SMI—32阳性的α运动神经元数目较对照组明显减少,背角的中间神经元数目无显著变化,可以制成ALS脊髓器官型培养模型。  相似文献   

6.
应用dF/dtmax指标测定骨骼肌收缩能力   总被引:4,自引:0,他引:4  
目的 :探讨张力上升最大速率 ( +dF/dtmax)与张力下降最大速率 ( -dF/dtmax)作为反映骨骼肌收缩能力方面的较灵敏指标。方法 :采用不同游泳运动的小白鼠模型 ,记录腓肠肌收缩的最大张力 (Fmax) ,+dF/dtmax与 -dF/dtmax,观察腓肠肌超微结构的变化。结果 :一般运动负荷组线粒体数量增加 ,肌丝排列整齐 ,腓肠肌Fmax,-dF/dtmax比对照组明显增加 (P <0 .0 5) ,+dF/dtmax坛加非常显著 (P <0 .0 1)。过度运动负荷组线粒体稀疏 ,肌丝排列较乱 ,腓肠肌Fmax、-dF/dtmax比对照组明显减小 (P <0 .0 5) ,+dF/dtmax 减小非常显著 (P <0 .0 1)。结论 :+dF/dtmax是衡量骨骼肌收缩能力更好的指标  相似文献   

7.
Yu ZB  Jiao B  Wang YY  Li H 《生理学报》2008,60(3):362-368
甲状腺功能亢进(甲亢)时甲状腺素分泌增加,不仅使具有神经支配的慢缩型肌纤维向快缩型转化,而且改变骨骼肌的强直收缩功能.因此,甲亢性肌病的肌肉乏力可能与骨骼肌强直收缩易发生疲劳有关.本实验在离体条件下,观测甲亢4周引起的大鼠慢缩肌--比目鱼肌(soleus, SOL)单收缩与间断强直收缩功能的变化.结果显示,甲亢4周大鼠体重明显低于同步对照组[(292±13)g vs (354±10)g],但SOL湿重没有明显改变[(107.3±8.6)mg vs (115.1±6.9)mg].甲亢大鼠SOL单收缩张力达到峰值的时间(time to peak tension, TPT)、从峰值降至75%舒张时间(time from peak tension to 75% relaxation, TR75)均明显缩短;强直收缩的TR75也明显缩短[(102.8±4.1)ms vs (178.8±15.8)ms];强直收缩的最适频率从对照组的100Hz增加到140Hz;间断强直收缩期间容易发生疲劳.甲亢大鼠SOL肌浆网Ca2 -ATP酶(sarcoplasmic-reticulum Ca2 -ATPase, SERCA)活性增高.采用SERCA特异性抑制剂CPA (1.0μmol/L)处理后,对照组与甲亢大鼠SOL间断强直收缩的TR75均延长,同时不易出现疲劳.5.0μmol/L CPA灌流虽可进一步抵抗甲亢大鼠SOL间断强直收缩引起的疲劳,但强直收缩期间的静息张力却明显升高.将CPA浓度增至10.0μmol/L,甲亢大鼠SOL间断强直收缩又趋向易发生疲劳.这些结果提示,与心肌相同,骨骼肌肌纤维SERCA活性亦可影响单收缩与强直收缩的舒张时间,SERCA活性升高可加速间断强直收缩发生疲劳.  相似文献   

8.
蟾蜍随机分为室温干燥、室温保湿、低温保湿和低温冬眠组,观察禁食蟾蜍在不同温度和湿度条件下的生存时间、体重变化、心脏活动、腓肠肌收缩功能和坐骨神经干动作电位,探寻能够延长禁食蟾蜍生存时间和机体生理功能维持时间的途径。结果显示,室温干燥组蟾蜍体重自实验第1 d起显著性下降(P<0.01),其它组无显著性变化。室温干燥、室温保湿、低温保湿和低温冬眠组蟾蜍的累计死亡率分别为100%(第6 d)、45.83%(第26 d)、16.67%(第36 d)、0%。除室温保湿组蟾蜍的心脏舒缩幅度自实验第20 d起下降之外(P<0.05),其它组的心肌舒缩幅度和心率无显著性变化。室温干燥组蟾蜍的腓肠肌收缩幅度自实验第1 d开始下降,第4 d起有显著性差异(P<0.05),低温保湿组在第27 d也显著性下降(P<0.05),其他组未发生显著性变化。各组蟾蜍坐骨神经干动作电位未发生显著性改变。充足的湿度和适当降温,尤其保持冬眠,能够延长禁食蟾蜍的生存时间和机体生理功能维持时间。  相似文献   

9.
Shu L  Dong YR  Yan WH  Zhai Y  Wang Y  Li W 《生理学报》2011,63(4):291-299
坐骨神经损伤是临床常见的周围神经疾病。神经损伤后再生肌肉和运动神经元会出现各种功能障碍,虽然其中一部分因素已被阐明,但多局限于受损神经局部,而对于再生后脊髓运动神经元的回返性抑制(recurrent inhibition,RI)通路的功能变化却很少被报道。本文研究大鼠短暂坐骨神经损伤后,恢复神经再支配(reinnervation)情况下,脊髓RI通路的功能变化。在正常或坐骨神经挤压(crush)受损后的成年大鼠上,通过刺激离断的脊髓背根(L5),在外侧腓肠肌-比目鱼肌(lateral gas-trocnemius-soleus,LG-S)神经或内侧腓肠肌(medial gastrocnemius,MG)神经记录单突触反射(monosynaptic reflex,MSR),并同时在另一神经给予条件性刺激,以检测LG-S和MG运动神经元间RI的变化。结果显示:(1)脊髓运动神经元的RI在坐骨神经挤压受损后即基本丢失(<5周),至损伤6周后部分恢复至正常的50%,并至少维持至损伤14周后;(2)一侧的坐骨神经损伤对对侧的RI没有影响;(3)外周神经损伤后,免疫组织化学方法显示脊髓运动神经元数目本身并不发生减少。以上...  相似文献   

10.
本研究采用SDS凝胶电泳方法从人脊神经前根中分离出人脊髓前角运动神经元特有的蛋白—190KD。将该蛋白作为抗原,免疫BALB/c小鼠,经杂交瘤技术,获得了抗190KD蛋白的单克隆抗体。免疫细胞化学检测表明,190KD单抗与脊髓灰质前角神经元、前根及肌支发生阳性反应。实验结果提示,190KD蛋白分布在脊髓运动神经元胞体及脊神经的前根和肌支纤维中。  相似文献   

11.
Glial cell-line derived neurotrophic factor (GDNF) is a potent survival factor for motor neurons. Previous studies have shown that some motor neurons depend upon GDNF during development but this GDNF-dependent motor neuron subpopulation has not been characterized. We examined GDNF expression patterns in muscle and the impact of altered GDNF expression on the development of subtypes of motor neurons. In GDNF hemizygous mice, motor neuron innervation to muscle spindle stretch receptors (fusimotor neuron innervation) was decreased, whereas in transgenic mice that overexpress GDNF in muscle, fusimotor innervation to muscle spindles was increased. Facial motor neurons, which do not contain fusimotor neurons, were not changed in number when GDNF was over expressed by facial muscles during their development. Taken together, these data indicate that fusimotor neurons depend upon GDNF for survival during development. Since the fraction of cervical and lumbar motor neurons lost in GDNF-deficient mice at birth closely approximates the size of the fusimotor neuron pool, these data suggest that motor neuron loss in GDNF-deficient mice may be primarily of fusimotor neuron origin.  相似文献   

12.
13.
14.
Sustained steady contractural or catchlike tension (CT) occurs in the metathoracic extensor tibiae muscle of the primitive insect the weta (Orthoptera: Stenopelmatidae) during its characteristic leg-extension defense behavior or following leg-position conditioning. Similar action occurs occasionally in semi-intact preparations and is abruptly turned off by a single peripheral inhibitory impulse. These phenomena were reproduced routinely by first infusing saline containing 10?8M (or stronger) octopamine into the muscle for 12 min, and then stimulating the slow excitatory motor neuron SETi with a brief burst. Direct stimulation of the dorsal unpaired median neuron, innervating the extensor tibiae (DUMETi) prior to SETi stimulation, also led to CT. Both octopamine and DUMETi markedly enhanced the tension developed in response to a burst of impulses in SETi.  相似文献   

15.
Song MR  Pfaff SL 《Cell》2005,123(3):363-365
Motor neurons are assigned unique subidentities preceding their axon navigation. This ensures proper innervation of muscle targets and is accompanied by a stereotypical clustering of motor neuron cell bodies into "motor pools" within the spinal cord. However, the mechanisms that drive motor neuron diversification have been poorly understood. A new study by Dasen et al. (2005) in this issue of Cell shows that a network of Hox genes is responsible for instructing motor pool development.  相似文献   

16.
The isometric contractile properties of frog (Rana pipiens) and toad (Bufo bufo) sartorii have been studied over the temperature range from 0 to 20 degrees C. The isometric twitch tension was found to vary considerably between these two species and between muscles in the same species. Between 0 and 4 degrees C there was very little change in maximum isometric twitch tension. Between 4 and 12 degrees C several muscles from frog or toad showed a potentiation of twitch tension whereas others showed a decline. Over this temperature range the toad sartorii consistently demonstrated a greater potentiation. By 12 degrees C a steady decline in twitch tension in both muscles was seen as the temperature range the toad sartorii consistently demonstrated a greater potentiation. By 12 degrees C a steady decline in twitch tension in both muscles was seen as the temperature approached 20 degrees C. The maximum isometric tetanic tension recorded between 18 and 20 degrees C increased fractionally to an average of 1.504 +/- 0.029 (n = 4) for frog sartorii and to 1.377 +/- 0.008 (n = 5) for toad sartorii. The time to peak twitch tension and the half-relaxation time decreased markedly with an increase in temperature. Moreover, the half-relaxation time was reduced by a greater proportion than the time to peak twitch tension. Measurements of instantaneous stiffness by controlled velocity releases from the plateau of isometric tetani revealed that the large increase in isometric tetanus tension as the muscle was warmed was not accompanied by a corresponding increase in the total number of active cross-bridges. The possibility that a decreased availability of intracellular Ca2+ ions at the contractile sites contributing to the fall of isometric twitch tension at elevated temperatures is discussed. The possibility exists that at elevated temperatures a change inthe intrinsic contractile ability of the muscle occurs which produces an increased tension per cross-bridge.  相似文献   

17.
A loss of about half of the trochlear motor neurons occurs during the course of normal development in duck and quail embryos. The role of the size of the target muscle in controlling the number of surviving motor neurons was examined by making motor neurons innervate targets either larger or smaller in size than their normal target. In one experiment the smaller trochlear motor neuron pool of the quail embryo was forced to innervate the larger superior oblique muscle of the duck embryo. This was accomplished by grafting the midbrain of a quail embryo in the place of the midbrain of a duck embryo. Results indicated that no additional quail trochlear motor neurons were rescued in spite of a considerable increase in target size. In another experiment the larger trochlear motor neuron pool of the duck embryo was made to innervate the smaller superior oblique muscle of the quail embryo. This resulted in loss of some additional neurons; however, the number of surviving motor neurons was not proportionate to the reduction in target size. These experiments failed to provide support for the hypothesis that the size of the target muscle controls the number of surviving motor neurons. Although contact with target is necessary for survival of neurons, factors other than the number or size of target cells are involved in the control of motor neuron numbers during development.  相似文献   

18.
A loss of about half of the trochlear motor neurons occurs during the course of normal development in duck and quail embryos. The role of the size of the target muscle in controlling the number of surviving motor neurons was examined by making motor neurons innervate targets either larger or smaller in size than their normal target. In one experiment the smaller trochlear motor neuron pool of the quail embryo was forced to innervate the larger superior oblique muscle of the duck embryo. This was accomplished by grafting the midbrain of a quail embryo in the place of the midbrain of a duck embyro. Results indicated that no additional quail trochlear motor neurons were rescued in spite of a considerable increase in target size. In another experiment the larger trochlear motor neuron pool of the duck embryo was made to innervate the smaller superior oblique muscle of the quail embryo. This resulted in loss of some additional neurons; however, the number of surviving motor neurons was not proportionate to the reduction in target size. These experiments failed to provide support for the hypothesis that the size of the target muscle controls the number of surviving motor neurons. Although contact with target is necessary for survival of neurons, factors other than the number or size of target cells are involved in the control of motor neuron numbers during development. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
A technique is reproted that permits transection of the sciatic nerve of mouse fetuses without interfering with fetal viability. Sciaticotomy was performed on Swiss Webster mice at day 17 of gestation; the contralateral side served as a control. Six weeks later the extensor digitorum longus (EDL) muscles on both sides were injected with horseradish peroxidase (HRP). Examination of the lumbar spinal cord revealed that while a substantial number of motor neurons in the region of the spinal cord giving rise to the sciatic nerve died, the EDL muscle did become reinnervated. The size of the EDL motor neuron pool on the denervated-reinnervated side was ~43% of that seen on the control side. While the control EDL motor neuron pool was located in lumbar segments L3–L5, the location of the pool to the denervated-reinnervated EDL was shifted cranially to L2–L4. Denervated-reinnervated EDL muscles were analyzed immunohistochemically to study the effect of fetal denervation on the neuronal cell adhesion molecule (N-CAM) expression. At 2 weeks postnatal, N-CAM immunoreactivity in control muscle was segregated to the motor end plate region, while fetally denervated muscle continued to express N-CAM along the length of the sarcolemma. Thus fetally denervated muscle does not develop the same pattern of N-CAM expression as normal, innervated muscle. By 6 weeks of age, the denervated-reinnervated muscle showed the same level and distribution of N-CAM immunoreactivity as did age-matched control muscle, indicating that most, if not all, of its myofibers had been reinnervated.  相似文献   

20.
A technique is reported that permits transection of the sciatic nerve of mouse fetuses without interfering with fetal viability. Sciaticotomy was performed on Swiss Webster mice at day 17 of gestation; the contralateral side served as control. Six weeks later the extensor digitorum longus (EDL) muscles on both sides were injected with horseradish peroxidase (HRP). Examination of the lumbar spinal cord revealed that while a substantial number of motor neurons in the region of the spinal cord giving rise to the sciatic nerve died, the EDL muscle did become reinnervated. The size of the EDL motor neuron pool on the denervated-reinnervated side was approximately 43% of that seen on the control side. While the control EDL motor neuron pool was located in lumbar segments L3-L5, the location of the pool to the denervated-reinnervated EDL was shifted cranially to L2-L4. Denervated-reinnervated EDL muscles were analyzed immunohistochemically to study the effect of fetal denervation on the neuronal cell adhesion molecule (N-CAM) expression. At 2 weeks postnatal, N-CAM immunoreactivity in control muscle was segregated to the motor end-plate region, while fetally denervated muscle continued to express N-CAM along the length of the sarcolemma. Thus fetally denervated muscle does not develop the same pattern of N-CAM expression as normal, innervated muscle. By 6 weeks of age, the denervated-reinnervated muscle showed the same level and distribution of N-CAM immunoreactivity as did age-matched control muscle, indicating that most, if not all, of its myofibers had been reinnervated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号