首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.  相似文献   

2.
3.
欧海龙  黄英 《生命科学》2007,19(2):179-183
哺乳动物细胞内存在着多种亚型的连接组蛋白,其中Hlfoo是首先在小鼠中发现、在卵母细胞中特异表达的一种连接组蛋白。H1foo通过与染色质的结合,改变染色质的结构,进而参与卵母细胞的成熟、受精后对精子染色质的重构及在体细胞核移植中对体细胞核的重编程等。本文就Hlfoo的分子结构特征、表达特点及其在受精过程、体细胞核的重编程过程中的作用作一综述。  相似文献   

4.
Oocytes and early embryos of multiple (non-mammalian) species lack the somatic form of the linker histone H1. To the best of our knowledge, a mammalian oocyte-specific linker (H1) histone(s) has not, as yet, been reported. We have uncovered the cDNA in question in the course of a differential screening (suppression subtractive hybridization (SSH)) project. Elucidation of the full-length sequence of this novel 1.2 kb cDNA led to the identification of a 912 bp open reading frame. The latter encoded a novel 34 kDa linker histone protein comprised of 304 amino acids, tentatively named H1oo. Amino acid BLAST analysis revealed that H1oo displayed the highest sequence homology to the oocyte-specific B4 histone of the frog, the respective central globular (putative DNA binding) domains displaying 54% identity. Substantial homology to the cs-H1 protein of the sea urchin oocyte was also apparent. While most oocytic mRNAs corresponding to somatic linker histones are not polyadenylated (and remain untranslated), the mRNAs of (non-mammalian) oocyte-specific linker histones and of mammalian H1oo, are polyadenylated, a process driven by the consensus signal sequence, AAUAAA, detected in the 3'-untranslated region of the H1oo cDNA. Our data suggest that the mouse oocyte-specific linker histone H1oo (1) constitutes a novel mammalian homolog of the oocyte-specific linker histone B4 of the frog and of the cs-H1 linker histone of the sea urchin; (2) is expressed as early as the GV (PI) stage oocyte, persisting into the MII stage oocyte, the oocytic polar bodies, and the two-cell embryo, extinction becoming apparent at the four- to eight-cell embryonic stage; and (3) may play a key role in the control of gene expression during oogenesis and early embryogenesis, presumably through the perturbation of chromatin structure.  相似文献   

5.
Oocytes and embryos of many species, including mammals, contain a unique linker (H1) histone, termed H1oo in mammals. It is uncertain, however, whether other H1 histones also contribute to the linker histone complement of these cells. Using immunofluorescence and radiolabeling, we have examined whether histone H10, which frequently accumulates in the chromatin of nondividing cells, and the somatic subtypes of H1 are present in mouse oocytes and early embryos. We report that oocytes and embryos contain mRNA encoding H10. A polymerase chain reaction-based test indicated that the poly(A) tail did not lengthen during meiotic maturation, although it did so beginning at the four-cell stage. Antibodies raised against histone H10 stained the nucleus of wild-type prophase-arrested oocytes but not of mice lacking the H10 gene. Following fertilization, H10 was detected in the nuclei of two-cell embryos and less strongly at the four-cell stage. No signal was detected in H10 -/- embryos. Radiolabeling revealed that species comigrating with the somatic H1 subtypes H1a and H1c were synthesized in maturing oocytes and in one- and two-cell embryos. Beginning at the four-cell stage in both wild-type and H10 -/- embryos, species comigrating with subtypes H1b, H1d, and H1e were additionally synthesized. These results establish that histone H10 constitutes a portion of the linker histone complement in oocytes and early embryos and that changes in the pattern of somatic H1 synthesis occur during early embryonic development. Taken together with previous results, these findings suggest that multiple H1 subtypes are present on oocyte chromatin and that following fertilization changes in the histone H1 complement accompany the establishment of regulated embryonic gene expression.  相似文献   

6.
7.
Chromatin decondensation and nuclear reprogramming by nucleoplasmin   总被引:1,自引:0,他引:1       下载免费PDF全文
Somatic cell nuclear cloning has repeatedly demonstrated striking reversibility of epigenetic regulation of cell differentiation. Upon injection into eggs, the donor nuclei exhibit global chromatin decondensation, which might contribute to reprogramming the nuclei by derepressing dormant genes. Decondensation of sperm chromatin in eggs is explained by the replacement of sperm-specific histone variants with egg-type histones by the egg protein nucleoplasmin (Npm). However, little is known about the mechanisms of chromatin decondensation in somatic nuclei that do not contain condensation-specific histone variants. Here we found that Npm could widely decondense chromatin in undifferentiated mouse cells without overt histone exchanges but with specific epigenetic modifications that are relevant to open chromatin structure. These modifications included nucleus-wide multiple histone H3 phosphorylation, acetylation of Lys 14 in histone H3, and release of heterochromatin proteins HP1beta and TIF1beta from the nuclei. The protein kinase inhibitor staurosporine inhibited chromatin decondensation and these epigenetic modifications with the exception of H3 acetylation, potentially linking these chromatin events. At the functional level, Npm pretreatment of mouse nuclei facilitated activation of four oocyte-specific genes from the nuclei injected into Xenopus laevis oocytes. Future molecular elucidation of chromatin decondensation by Npm will significantly contribute to our understanding of the plasticity of cell differentiation.  相似文献   

8.
《Epigenetics》2013,8(12):1489-1497
The genome of differentiated somatic nuclei is remodeled to a totipotent state when they are transplanted into enucleated oocytes. To clarify the mechanism of this genome remodeling, we analyzed changes in the composition of core histone variants in nuclear-transferred embryos, since recent evidence has revealed that chromatin structure can be remodeled as a result of variant histone replacement. We found that the donor cell-derived histone H3 variants H3.1, H3.2, and H3.3, as well as H2A and H2A.Z, were rapidly eliminated from the chromatin of nuclei transplanted into enucleated oocytes. Accompanying this removal, oocyte-stored histone H3 variants and H2A.X were incorporated into the transplanted nuclei, while the incorporation of H2A and H2A.Z was minimal or not detected. The incorporation of these variant histones was DNA replication-independent. These results suggest that most core histone H2A and H3 components are dynamically exchanged between donor nuclei and recipient cytoplasm, which further suggests that replacement of donor cell histones with oocyte-stored histones may play a key role in genome remodeling in nuclear-transferred embryos. In addition, the incorporation patterns of all of the histone variants in the nuclear-transferred embryos were virtually the same as in the fertilized embryos. Only the incorporation pattern of H3.1 differed; it was incorporated into the transplanted donor nuclei, but not in the pronuclei of fertilized embryos. This result suggests that the incorporation of H3.1 has a detrimental effect on the process of genome remodeling and contributes to the low success rate of somatic nuclear cloning.  相似文献   

9.
A multichaperone nucleosome-remodeling complex that contains the H1 linker histone chaperone nuclear autoantigenic sperm protein (NASP) has recently been described. Linker histones (H1) are required for the proper completion of normal development, and NASP transports H1 histones into nuclei and exchanges H1 histones with DNA. Consequently, we investigated whether NASP is required for normal cell cycle progression and development. We now report that without sufficient NASP, HeLa cells and U2OS cells are unable to replicate their DNA and progress through the cell cycle and that the NASP(-/-) null mutation causes embryonic lethality. Although the null mutation NASP(-/-) caused embryonic lethality, null embryos survive until the blastocyst stage, which may be explained by the presence of stored NASP protein in the cytoplasm of oocytes. We conclude from this study that NASP and therefore the linker histones are key players in the assembly of chromatin after DNA replication.  相似文献   

10.
Nashun B  Akiyama T  Suzuki MG  Aoki F 《Epigenetics》2011,6(12):1489-1497
The genome of differentiated somatic nuclei is remodeled to a totipotent state when they are transplanted into enucleated oocytes. To clarify the mechanism of this genome remodeling, we analyzed changes in the composition of core histone variants in nuclear-transferred embryos, since recent evidence has revealed that chromatin structure can be remodeled as a result of variant histone replacement. We found that the donor cell-derived histone H3 variants H3.1, H3.2, and H3.3, as well as H2A and H2A.Z, were rapidly eliminated from the chromatin of nuclei transplanted into enucleated oocytes. Accompanying this removal, oocyte-stored histone H3 variants and H2A.X were incorporated into the transplanted nuclei, while the incorporation of H2A and H2A.Z was minimal or not detected. The incorporation of these variant histones was DNA replication-independent. These results suggest that most core histone H2A and H3 components are dynamically exchanged between donor nuclei and recipient cytoplasm, which further suggests that replacement of donor cell histones with oocyte-stored histones may play a key role in genome remodeling in nuclear-transferred embryos. In addition, the incorporation patterns of all of the histone variants in the nuclear-transferred embryos were virtually the same as in the fertilized embryos. Only the incorporation pattern of H3.1 differed; it was incorporated into the transplanted donor nuclei, but not in the pronuclei of fertilized embryos. This result suggests that the incorporation of H3.1 has a detrimental effect on the process of genome remodeling and contributes to the low success rate of somatic nuclear cloning.  相似文献   

11.
12.
DNA methylation has been implicated in chromatin condensation and nuclear organization, especially at sites of constitutive heterochromatin. How this is mediated has not been clear. In this study, using mutant mouse embryonic stem cells completely lacking in DNA methylation, we show that DNA methylation affects nuclear organization and nucleosome structure but not chromatin compaction. In the absence of DNA methylation, there is increased nuclear clustering of pericentric heterochromatin and extensive changes in primary chromatin structure. Global levels of histone H3 methylation and acetylation are altered, and there is a decrease in the mobility of linker histones. However, the compaction of both bulk chromatin and heterochromatin, as assayed by nuclease digestion and sucrose gradient sedimentation, is unaltered by the loss of DNA methylation. This study shows how the complete loss of a major epigenetic mark can have an impact on unexpected levels of chromatin structure and nuclear organization and provides evidence for a novel link between DNA methylation and linker histones in the regulation of chromatin structure.  相似文献   

13.
The effect of chromatin organization on EGFP-tagged histone protein dynamics within the cell nucleus has been probed using fluorescence correlation and recovery measurements on single living HeLa cells. Our studies reveal that free fraction of core-particle histones exist as multimers within the cell nucleus whereas the linker histones exist in monomeric forms. The multimeric state of core histones is found to be invariant across mammalian and polytene chromosomes and this is ATP dependent. In contrast, the dynamics of the linker histones exhibits two distinct diffusion timescales corresponding to its transient binding and unbinding to chromatin governed by the tail domain residues. Under conditions of chromatin condensation induced by apoptosis, the free multimeric fraction of core histones is found to become immobile, while the monomeric linker histone mobility is partially reduced. In addition, we observe differences in nuclear colocalization of linker and core particle histones. These results are validated through Brownian dynamics simulation of core and linker histone mobility. Our findings provide a framework to understand the coupling between the state of chromatin assembly and histone protein dynamics that is central to accessing regulatory sites on the genome.  相似文献   

14.
Nuclei of differentiated cells can acquire totipotency following transfer into the cytoplasm of oocytes. While the molecular basis of this nuclear reprogramming remains unknown, the developmental potential of nuclear-transfer embryos is influenced by the cell-cycle stage of both donor and recipient. As somatic H1 becomes immunologically undetectable on bovine embryonic nuclei following transfer into ooplasm and reappears during development of the reconstructed embryo, suggesting that it may act as a marker of nuclear reprogramming, we investigated the link between cell-cycle state and depletion of immunoreactive H1 following nuclear transplantation. Blastomere nuclei at M-, G1-, or G2-phase were introduced into ooplasts at metaphase II, telophase II, or interphase, and the reconstructed embryos were processed for immunofluorescent detection of somatic histone H1. Immunoreactivity was lost more quickly from donor nuclei at metaphase than at G1 or G2. Regardless of the stage of the donor nucleus, immunoreactivity was lost most rapidly when the recipient cytoplast was at metaphase and most slowly when the recipient was at interphase. When the recipient oocyte was not enucleated, however, immunoreactive H1 remained in the donor nucleus. The phosphorylation inhibitors 6-DMAP, roscovitine, and H89 inhibited the depletion of immunoreactive H1 from G2, but not G1, donor nuclei. In addition, immunoreactive H1 was depleted from mouse blastomere nuclei following transfer into bovine oocytes. Finally, expression of the developmentally regulated gene, eIF-1A, but not of Gapdh, was extinguished in metaphase recipients but not in interphase recipients. These results indicate that evolutionarily conserved cell-cycle-regulated activities, nuclear elements, and phosphorylation-linked events participate in the depletion of immunoreactive histone H1 from blastomere nuclei transferred in oocyte cytoplasm and that this is linked to changes in gene expression in the transferred nucleus.  相似文献   

15.
Recent studies, using cytometric techniques based on fluorescence microscopy, have provided new information on how linker histones interact with chromatin in vivo or in situ. In particular, the use of green fluorescent proteins (GFPs) has enabled detailed studies of how individual H1 subtypes, and specific motifs in them, interact with chromatin in vivo. Furthermore, the development of cytochemical methods to study the interaction between linker histones and chromatin using DNA-binding fluorochromes as indirect probes for linker histone affinity in situ, in combination with highly sensitive and specific analytical methods, has provided additional information on the interactions between linker histones and chromatin in several cell systems. Such results verified that linker histones have a substantially higher affinity for chromatin in mature chicken erythrocytes than in frog erythrocytes, and they also indicated that the affinity decreased during differentiation of the frog erythrocytes. Furthermore, in cultured human fibroblasts, the linker histones showed a relatively high affinity for chromatin in interphase, whereas it showed a significantly lower affinity in highly condensed metaphase chromosomes. This method also enables the analysis of linker histone affinity for chromatin in H1-depleted fibroblasts reconstituted with purified linker histones. No consistent correlation between linker histone affinity and chromatin condensation has so far been detected.  相似文献   

16.
The oocyte-specific subtype of the linker histone H1 is H1FOO, which constitutes a major part of oocyte chromatin. H1foo is expressed in growing oocytes, through fertilization, up until the two-cell embryo stage, when it is subsequently replaced by somatic H1 subtypes. To elucidate whether an epigenetic mechanism is involved in the limited expression of H1foo, we analyzed the dynamics of the DNA methylation status of the H1foo locus in germ and somatic cells. We identified a tissue-dependent and differentially methylated region (T-DMR) upstream of the H1foo gene, which was hypermethylated in sperm, somatic cells, and stem cell lines. This region was specifically unmethylated in the ovulated oocyte, where H1foo is expressed. 5-Aza-2'-deoxycytidine treatments and luciferase assays provided in vitro evidence that DNA methylation plays a role in repressing H1foo in nonexpressing cells. DNA methylation analyses of fetal germ cells revealed the T-DMR to be hypomethylated in female and male germ cells at Embryonic Day 9.5 (E9.5), whereas it was highly methylated in somatic cells at this stage. Intriguingly, the unmethylated status was continuously observed throughout oogenesis at E9.5, E12.5, E15.5, E18.5, in mature oocytes, and after fertilization, in E3.5 blastocysts. In comparison, male germ cells acquired methylation beyond E18.5. These data demonstrate a continuously unmethylated circuit at the H1foo locus in the female germline.  相似文献   

17.
18.
染色质结构可由转录抑制状态转变为转录激活状态,从而调节早期胚胎由母型基因控制转变为合子型基因控制。作为一种特殊类型的连接组蛋白——哺乳动物特异性连接组蛋白H1oo,其表达方式具有一定的时序性,但又与其他7种连接组蛋白亚型有所不同,H1oo不但能够在卵母细胞.胚胎发育转换过程中发挥功能,而且还可能在基因组重编程过程中起到关键性作用。分析研究卵母细胞特异性连接组蛋白,有助于认识染色质重构建、基因组重编程过程以及核移植的分子机制,而且可能对克隆效率的提高有所补益。  相似文献   

19.
During differentiation, somatic nuclei acquire highly specialized DNA and chromatin modifications, which are thought to result in cellular memory of the differentiated state. Upon somatic nuclear transfer into oocytes, the donor nucleus may have to undergo reprogramming of these epigenetic marks in order to achieve totipotency. This may involve changes in epigenetic features similar to those that occur in normal embryos during early development. However, there is accumulating evidence that epigenetic reprogramming is severely deficient in cloned embryos. Several reports reveal inefficient demethylation and inappropriate reestablishment of DNA methylation in quantitative and qualitative patterns on somatic nuclear transfer. Here we examine histone H3 lysine 9 (H3-K9) methylation and acetylation in normal embryos and in those created by somatic nuclear transfer. We find that H3-K9 methylation is reprogrammed in parallel with DNA methylation in normal embryos. However, the majority of cloned embryos exhibit H3-K9 hypermethylation associated with DNA hypermethylation, suggesting a genome-wide failure of reprogramming. Strikingly, the precise epigenotype in cloned embryos depends on the donor cell type, and the proportion of embryos with normal epigenotypes correlates closely with the proportion developing to the blastocyst stage. These results suggest a mechanistic link between DNA and histone methylation in the mammalian embryo and reveal an association between epigenetic marks and developmental potential of cloned embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号