首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The most distinctive feature of oocyte-specific linker histones is the specific timing of their expression during embryonic development. In Xenopus nuclear transfer, somatic linker histones in the donor nucleus are replaced with oocyte-specific linker histone B4, leading to the involvement of oocyte-specific linker histones in nuclear reprogramming. We recently have discovered a mouse oocyte-specific linker histone, named H1foo, and demonstrated its expression pattern in normal preimplantation embryos. The present study was undertaken to determine whether the replacement of somatic linker histones with H1foo occurs during the process of mouse nuclear transfer. H1foo was detected in the donor nucleus soon after transplantation. Thereafter, H1foo was restricted to the chromatin in up to two-cell stage embryos. After fusion of an oocyte with a cell expressing GFP (green fluorescent protein)-tagged somatic linker histone H1c, immediate release of H1c in the donor nucleus was observed. In addition, we used fluorescence recovery after photobleaching (FRAP), and found that H1foo is more mobile than H1c in living cells. The greater mobility of H1foo may contribute to its rapid replacement and decreased stability of the embryonic chromatin structure. These results suggest that rapid replacement of H1c with H1foo may play an important role in nuclear remodeling.  相似文献   

2.
Oocyte-specific histone H1 is expressed during oogenesis and early embryogenesis. It has been described in mice and some nonmammalian species, but not in humans. Here, we identified the cDNA in unfertilized human oocytes using direct RT-nested PCR of a single cell. Sequencing of this cDNA indicated an open reading frame encoding a 347-amino acid protein. Expression was oocyte-specific. Homology was closest with the corresponding gene of mouse (H1oo; 42.3%), and, to lesser extent, with that of Xenopus laevis (B4; 25.0%). The gene, named osH1, included five exons as predicted by the NCBI annotation project of the human genome, although the actual splicing site at the 3(') end of exon 3 was different by 48 nucleotides from the prediction. The presence of polyadenylation signals and successful amplification of cDNA by RT-PCR using an oligo(dT) primer suggested that the osH1 mRNA is polyadenylated unlike somatic H1 mRNA. Our technique and findings should facilitate investigation of human fertilization and embryogenesis.  相似文献   

3.
The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.  相似文献   

4.
Oocytes and embryos of many species, including mammals, contain a unique linker (H1) histone, termed H1oo in mammals. It is uncertain, however, whether other H1 histones also contribute to the linker histone complement of these cells. Using immunofluorescence and radiolabeling, we have examined whether histone H10, which frequently accumulates in the chromatin of nondividing cells, and the somatic subtypes of H1 are present in mouse oocytes and early embryos. We report that oocytes and embryos contain mRNA encoding H10. A polymerase chain reaction-based test indicated that the poly(A) tail did not lengthen during meiotic maturation, although it did so beginning at the four-cell stage. Antibodies raised against histone H10 stained the nucleus of wild-type prophase-arrested oocytes but not of mice lacking the H10 gene. Following fertilization, H10 was detected in the nuclei of two-cell embryos and less strongly at the four-cell stage. No signal was detected in H10 -/- embryos. Radiolabeling revealed that species comigrating with the somatic H1 subtypes H1a and H1c were synthesized in maturing oocytes and in one- and two-cell embryos. Beginning at the four-cell stage in both wild-type and H10 -/- embryos, species comigrating with subtypes H1b, H1d, and H1e were additionally synthesized. These results establish that histone H10 constitutes a portion of the linker histone complement in oocytes and early embryos and that changes in the pattern of somatic H1 synthesis occur during early embryonic development. Taken together with previous results, these findings suggest that multiple H1 subtypes are present on oocyte chromatin and that following fertilization changes in the histone H1 complement accompany the establishment of regulated embryonic gene expression.  相似文献   

5.
The only eukaryotic mRNAs that are not polyadenylated are the replication-dependent histone mRNAs in metazoans. The sea urchin genome contains two sets of histone genes that encode non-polyadenylated mRNAs. One of these sets is a tandemly repeated gene cluster with a 5.6-kb repeat unit containing one copy of each of the five alpha-histone genes and is present as a single large cluster which spans over 1 Mb. There is a second set of genes, consisting of 39 genes, containing two histone H1 genes, 34 genes encoding core histone proteins (H2a, H2b, H3 and H4) and three genes expressed only in the testis. Unlike vertebrates where these genes are clustered, the sea urchin late histone genes, expressed in embryos, larvae and adults, are dispersed throughout the genome. There are also genes encoding polyadenylated histone mRNAs, which encode histone variants, including all variants found in other metazoans, as well as a unique set of five cleavage stage histone proteins expressed in oocytes. The cleavage stage histone H1 is the orthologue of an oocyte-specific histone H1 protein found in vertebrates.  相似文献   

6.
The oocyte-specific subtype of the linker histone H1 is H1FOO, which constitutes a major part of oocyte chromatin. H1foo is expressed in growing oocytes, through fertilization, up until the two-cell embryo stage, when it is subsequently replaced by somatic H1 subtypes. To elucidate whether an epigenetic mechanism is involved in the limited expression of H1foo, we analyzed the dynamics of the DNA methylation status of the H1foo locus in germ and somatic cells. We identified a tissue-dependent and differentially methylated region (T-DMR) upstream of the H1foo gene, which was hypermethylated in sperm, somatic cells, and stem cell lines. This region was specifically unmethylated in the ovulated oocyte, where H1foo is expressed. 5-Aza-2'-deoxycytidine treatments and luciferase assays provided in vitro evidence that DNA methylation plays a role in repressing H1foo in nonexpressing cells. DNA methylation analyses of fetal germ cells revealed the T-DMR to be hypomethylated in female and male germ cells at Embryonic Day 9.5 (E9.5), whereas it was highly methylated in somatic cells at this stage. Intriguingly, the unmethylated status was continuously observed throughout oogenesis at E9.5, E12.5, E15.5, E18.5, in mature oocytes, and after fertilization, in E3.5 blastocysts. In comparison, male germ cells acquired methylation beyond E18.5. These data demonstrate a continuously unmethylated circuit at the H1foo locus in the female germline.  相似文献   

7.
8.
9.
10.
We have studied the structure and expression of histone H2B mRNA and genes in the parasitic protozoan Leishmania enrietti. A genomic clone containing three tandemly repeated genes has been sequenced and shown to encode three identical histone proteins and two types of closely related mRNA sequence. We have also sequenced three independent cDNA clones and demonstrated that the Leishmania H2B mRNAs are polyadenylated, similar to the basal histone mRNAs of higher eucaryotes and the histone mRNAs of yeast. In addition, the Leishmania mRNAs contain inverted repeats near the poly(A) tail which could form stem-loops similar in secondary structure, but not in sequence, to the 3' stem-loops of nonpolyadenylated replication-dependent histones of higher eucaryotes. Unlike the replication-dependent histones, the Leishmania histone H2B mRNAs do not decrease in abundance following treatment with inhibitors of DNA synthesis. The histone mRNAs are differentially expressed during the parasite life cycle and accumulate to a higher level in the extracellular promastigotes (the form which in nature lives within the gut of the insect vector) than in the intracellular amastigotes (the form that lives within the mammalian host macrophages).  相似文献   

11.
We have fractionated the whole cell extract of Xenopus oocytes (oocyte S-150) and isolated the endogenous components required for DNA supercoiling and nucleosome formation. Histone H2B and the three oocyte-specific H2A proteins were purified as free histones. Histones H3 and H4 were purified 100-fold in a complex with the acidic protein N1. In the presence of DNA topoisomerase I or II, histone H3/H4.N1 complexes supercoil DNA in a reaction that is inhibited by Mg2+, and this inhibition is relieved by NTPs. The supercoiling reaction induced by H3/H4.N1 complexes is enhanced by free histone H2A-H2B dimers, which by themselves do not supercoil DNA. Nuclease digestions and protein analyses indicate that H3/H4.N1 complexes form subnucleosomal particles containing histones H3 and H4. Nucleosomes containing 146-base pair DNA and the four histones are formed when histones H2A and H2B complement the reaction.  相似文献   

12.
Histone H2A ubiquitination is a bulky posttranslational modification that occurs at the vicinity of the binding site for linker histones in the nucleosome. Therefore, we took several experimental approaches to investigate the role of ubiquitinated H2A (uH2A) in the binding of linker histones. Our results showed that uH2A was present in situ in histone H1-containing nucleosomes. Notably in vitro experiments using nucleosomes reconstituted onto 167-bp random sequence and 208-bp (5 S rRNA gene) DNA fragments showed that ubiquitination of H2A did not prevent binding of histone H1 but it rather enhanced the binding of this histone to the nucleosome. We also showed that ubiquitination of H2A did not affect the positioning of the histone octamer in the nucleosome in either the absence or the presence of linker histones.  相似文献   

13.
The replacement linker histones H1(0) and H5 are present in frog and chicken erythrocytes, respectively, and their accumulation coincides with cessation of proliferation and compaction of chromatin. These cells have been analyzed for the affinity of linker histones for chromatin with cytochemical and biochemical methods. Our results show a stronger association between linker histones and chromatin in chicken erythrocyte nuclei than in frog erythrocyte nuclei. Analyses of linker histones from chicken erythrocytes using capillary electrophoresis showed H5 to be the subtype strongest associated with chromatin. The corresponding analyses of frog erythrocyte linker histones using reverse-phase high performance liquid chromatography showed that H1(0) dissociated from chromatin at somewhat higher ionic strength than the three additional subtypes present in frog blood but at lower ionic strength than chicken H5. Which of the two H1(0) variants in frog is expressed in erythrocytes has thus far been unknown. Amino acid sequencing showed that H1(0)-2 is the only H1(0) subtype present in frog erythrocytes and that it is 100% acetylated at its N termini. In conclusion, our results show differences between frog and chicken linker histone affinity for chromatin probably caused by the specific subtype composition present in each cell type. Our data also indicate a lack of correlation between linker histone affinity and chromatin condensation.  相似文献   

14.
15.
16.
17.
A large body of data suggests that the linker histones family (H1) affects gene expression. Investigation of the linker histones role is then of a major interest in cell cycle studies with implications in gene therapy. Indeed, it has been shown that in most tissues a switch of histone subtypes occurs when the cells cease to divide. To investigate linker histone role in gene or transgene expression, an antibody against subtypes of H1 would be useful for immunoprecipitation experiments and further assays measuring H1subtypes-DNA interactions in living cells. In order to produce an antibody against the H1e subtype of linker histones, two synthetic peptides derived from two regions of the H1e mouse histone protein were examined for their potential, [as keyhole limpet hemocyanin (KLH) conjugates] to elicit polyclonal anti-H1e antibodies in New Zealand white rabbits. Selection of the peptide sequences was based on amino acid differences within the different classes of histones and between mice and rabbit histones as well. The evaluation of their potential immunogenic properties was based on examination of peptide hydropathy using predicting algorithms. Immunoglobulins (IgG) obtained from immunized and nonimmunized rabbits were tested using enzyme-linked immunosorbent assay (ELISA) procedures, Western immunoblot, and immunofluorescence experiments. Results showed that the selected synthetic peptides gave rise to a high-titer polyclonal antibody able to recognize the H1e histone under various conditions. This polyclonal antibody did not cross-react with other histones. To our knowledge, this is the first antibody produced against the mouse H1e linker histone.  相似文献   

18.
Loss of linker histone H1 in cellular senescence   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

19.
Mice contain at least seven nonallelic forms of the H1 histones, including the somatic variants H1a-e and less closely related variants H1 degrees and H1t. The mouse H1 degrees and H1c (H1var.1) genes were isolated and characterized previously. We have now isolated, sequenced and studied the expression properties of two additional mouse H1 genes, termed H1var.2 and H1var.3. Extensive amino acid and nucleotide sequence comparisons were made between the two genes and other mammalian H1 histone genes. A high degree of nucleotide sequence identity was seen between the H1var.2, rat H1d and human H1b genes, even well beyond the coding region, indicating that these genes are likely homologues. Unlike the previously characterized mouse H1var.1 gene which produces both nonpolyadenylated and polyadenylated mRNAs, the H1var.2 and H1var.3 genes produce only typical, replication dependent, nonpolyadenylated mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号