首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable hydrogels are attractive 3D environments for cell and tissue growth. In cartilage tissue engineering, mechanical stimulation has been shown to be an important regulator in promoting cartilage development. However, the impact of mechanical loading on the gel degradation kinetics has not been studied. In this study, we examined hydrolytically labile gels synthesized from poly(lactic acid)-b-poly(ethylene glycol)-b-poly-(lactic acid) dimethacrylate macromers, which have been used for cartilage tissue engineering. The gels were subject to physiological loading conditions in order to examine the effects of loading on hydrogel degradation. Initially, hydrogels were formed with two different cross-linking densities and subject to a dynamic compressive strain of 15% at 0.3, 1, or 3 Hz. Degradation behavior was assessed by mass loss, equilibrium swelling and compressive modulus as a function of degradation time. From equilibrium swelling, the pseudo-first-order reaction rate constants were determined as an indication of degradation kinetics. The application of dynamic loading significantly enhanced the degradation time for the low cross-linked gels (P < 0.01) while frequency showed no statistical differences in degradation rates or bulk erosion profiles. In the higher cross-linked gels, a 3 Hz dynamic strain significantly increased the degradation kinetics resulting in an overall faster degradation time by 6 days compared to gels subject to the 0.3 and 1 Hz loads (P < 0.0001). The bioreactor set-up also influenced overall degradation behavior where the use of impermeable versus permeable platens resulted in significantly lower degradation rate constants for both cross-linked gels (P < 0.001). The compressive modulus exponentially decreased with degradation time under dynamic loading. Together, our findings indicate that both loading regime and the bioreactor setup influence degradation and should be considered when designing and tuning a biodegradable hydrogel where mechanical stimulation is employed.  相似文献   

2.
Tuning the degradation profiles of polymer cell carriers to match cell and tissue growth is an important design parameter for (cartilage) tissue engineering. In this study, degradable hydrogels were fabricated from divinyl, tetrafunctional poly(ethylene glycol) (PEG) and multivinyl, multifunctional poly(vinyl alcohol) (PVA) macromers to form homopolymer and copolymer gels. These gels were characterized by their volumetric swelling ratio and mass loss profiles as a function of degradation time. By variation of the macromer chemistry and functionality, the degradation time changed from less than 1 day for homopolymer PVA gels to 34 days for pure PEG gels. Furthermore, the degrading medium influenced mass loss, and a marked decrease in degradation time, from 34 to 12 days, was observed with the PEG gels when a chondrocyte-specific medium containing fetal bovine serum was employed. Interestingly, when copolymer gels of PEG and PVA were formed, PVA was released throughout the degradation (as determined by gel permeation chromatography) suggesting that covalent cross-linking of the PVA in the network was facilitated by copolymerizing with the PEG macromer. To assess these novel gels for cartilage tissue engineering applications, chondrocytes were photoencapsulated in the copolymer networks and cultured in vitro for up to 6 weeks. DNA, glycosaminoglycan (GAG), and total collagen contents increased with culture time, and the resulting neocartilaginous tissue at 6 weeks was homogeneously distributed as seen histologically. Biochemical analysis revealed that the constructs were comprised of 0.66 +/- 0.04 microg of DNA/mg wet weight (ww), 1.0 +/- 0.05% GAG/ww, and 0.29 +/- 0.07% total collagen/ww at 6 weeks. Furthermore, the compressive modulus increased during culture from 7 to 97 kPa as the neocartilaginous tissue evolved and the gel degraded. In summary, fabricating hydrogels through the copolymerization of PEG and PVA macromers is an effective tool for encapsulating chondrocytes, controlling gel degradation profiles, and generating cartilaginous tissue.  相似文献   

3.
Murakami S  Aoki N 《Biomacromolecules》2006,7(7):2122-2127
Novel bio-based hydrogels were prepared by cross-linking of microbial poly(gamma-glutamic acid) (PGA) with saccharides such as glucose, maltotriose, and cyclodextrin (CD) in the presence of water-soluble carbodiimide in dimethyl sulfoxide (DMSO) by one-pot synthesis at 25 degrees C for 24 h. The degradation of the gels in alkaline solution (pH 9) at 37 degrees C was also investigated. The PGA gels cross-linked with various neutral saccharides were obtained in relatively high recovery yields by use of a base like 4,4-(dimethylamino)pyridine. The PGA gel cross-linked by glucose showed the highest water absorption of 3000 g/g. The PGA gels cross-linked by CDs showed higher water absorption than those cross-linked by the corresponding linear saccharides. It was revealed that the water absorption of the PGA gel was affected by the cross-linker content and also the structure of cross-linkers as they had an effect on the cross-linking density of the PGA gel. The PGA gels were hydrolyzed under alkaline condition (pH 9) at 37 degrees C. The degradation rate was higher when the cross-linker content of the gel was lower.  相似文献   

4.
Block copolymers poly(2-(dimethylamino) ethyl methacrylate)-b-poly(polyethylene glycol methacrylate) (PDMAEMA-b-P(PEGMA)) were prepared via reversible addition fragmentation chain transfer polymerization (RAFT). The polymerization was found to proceed with the expected living behavior resulting in block copolymers with varying block sizes of low polydispersity (PDI <1.3). The resulting block copolymer was self-assembled in an aqueous environment, leading to the formation of pH-responsive micelles. Further stabilization of the micellar system was performed in water using ethylene glycol dimethacrylate and the RAFT process to cross-link the shell. The cross-linked micelle was found to have properties significantly different from those of the uncross-linked block copolymer micelle. While a distinct critical micelle concentration (CMC) was observed using block copolymers, the CMC was absent in the cross-linked system. In addition, a better stability against disintegration was observed when altering the ionic strength such as the absence of changes of the hydrodynamic diameter with increasing NaCl concentration. Both cross-linked and uncross-linked micelles displayed good binding ability for genes. However, the cross-linked system exhibited a slightly superior tendency to bind oligonucleotides. Cytotoxicity tests confirmed a significant improvement of the biocompatibility of the synthesized cross-linked micelle compared to that of the highly toxic PDMAEMA. The cross-linked micelles were taken up by cells without causing any signs of cell damage, while the PDMAEMA homopolymer clearly led to cell death.  相似文献   

5.
Du JZ  Sun TM  Weng SQ  Chen XS  Wang J 《Biomacromolecules》2007,8(11):3375-3381
Novel biodegradable hydrogels by photo-cross-linking macromers based on polyphosphoesters and poly(ethylene glycol) (PEG) are reported. Photo-cross-linkable macromers were synthesized by ring-opening polymerization of the cyclic phosphoester monomer 2-(2-oxo-1,3,2-dioxaphospholoyloxy) ethyl methacrylate (OPEMA) using PEG as the initiator and stannous octoate as the catalyst. The macromers were characterized by 1H NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography measurements. The content of polyphosphoester in the macromer was controlled by varying the feed ratio of OPEMA to PEG. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.05% (w/w) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors were evaluated. The results demonstrated that cross-linking density and pH values strongly affected the degradation rates. The macromers was compatible to osteoblast cells, not exhibiting significant cytotoxicity up to 0.5 mg/mL. "Live/dead" cell staining assay also demonstrated that a large majority of the osteoblast cells remained viable after encapsulation into the hydrogel constructs, showing their potential as tissue engineering scaffolds.  相似文献   

6.
A major challenge when designing cell scaffolds for chondrocyte delivery in vivo is creating scaffolds with sufficient mechanical properties to restore initial function while simultaneously controlling temporal changes in the gel structure to facilitate tissue formation. To address this design challenge, degradable photocrosslinked hydrogels based on poly(ethylene glycol) were investigated. To alter the gel's initial mechanical properties, hydrogels were fabricated by varying the initial macromer concentration from 10% to 15% to 20%. A twofold increase in macromer concentration resulted in an eightfold increase in the initial compressive modulus from 60 to 500 kPa. Gel degradation was tailored by incorporating fast-degrading crosslinks that enable maximal extracellular matrix (ECM) diffusion with time and a minimal number of nondegrading (or slowly degrading) crosslinks to maintain scaffold integrity and prevent complete gel erosion during tissue formation. Chondrocytes encapsulated in these gels produced cartilaginous tissue rich in glycosaminoglycans and collagen as seen biochemically and histologically. Interestingly, mass loss appeared to more closely match tissue secretion in gels fabricated from a 15% macromer concentration. However, the spatial ECM distribution was grossly similar in all three gels. By tailoring gel degradation and controlling network evolution during degradation, gels with optimal properties can be fabricated to support initially physiologic compressive loads while simultaneously supporting the formation of a neotissue.  相似文献   

7.
The synthesis of novel hybrid hydrogels by stepwise copolymerization of multiarm vinyl sulfone-terminated poly(ethylene glycol) macromers and alpha-omega cysteine oligopeptides via Michael-type additions is described. Cross-linking kinetics, studied by in situ rheometry, can be controlled by pH and the presence of charged amino acid residues in close proximity to the Cys, which modulates the pK(a) of the thiol group. These end-linked networks were characterized by their equilibrium swelling in water, by their viscoelastic properties in the swollen state, and by their soluble fraction. It was demonstrated that structure and properties are very sensitive to the preparation state including stoichiometry and precursor concentration and less sensitive to the pH during cross-linking. For each network the concentration of elastically active chains (nu) was calculated from experimentally determined sol fractions using Miller-Macosko theory and compared to values obtained from swelling and rheometry studies and by calculation from Flory's classical network models. Hydrogels were also prepared with varying macromer structures, and their properties were shown to respond to both macromer functionality and molecular weight.  相似文献   

8.
In order to optimize the use of proteins as functional ingredients in foods, one needs more insight into the effects of environmental conditions (pH, ionic strength, and temperature) on the functional properties of protein. This paper summarizes the results of an extensive study on heat-induced gelation of ovalbumin (egg-white protein) and soybean protein in the concentration range from 10 to 35 g/100 g. It was the aim of the study to relate the rheological properties of thermally induced protein gels to the microstructure of the gel and the physicochemical properties of the constituent protein. The gelling behavior of the protein was quantified with rheological techniques, and the physical properties of the gels were determined, at small and large deformations. From the swelling/dissolving behavior of the gels in various media, the nature of the crosslinks was determined qualitatively. The microstructure of the gels was determined with electron microscopy. Nmr-spectroscopy was applied in order to elucidate changes in conformation during heating. It was found that the formation of a continuous covalently crosslinked network is not a prerequisite for thermally-induced protein gelation. The properties of a gel strongly depend on the pH at which the gel is formed. When heat-set at high pH(pH~10), a homogeneous, strong, and almost transparent gel is formed, consisting of flexible crosslinked protein gels. Heat-setting at low pH (pH 5) leads to the formation of a heterogeneous and weak gel, which easily exudes water. This gel consists of crosslinked aggregated protein. The ionic strength of the solvent in which the protein is dissolved and heat-set has a much lower effect on gel properties.  相似文献   

9.
The use of mechanically strained acrylamide/acrylate copolymers is reported as a new alignment medium for biomacromolecules. Compared to uncharged, strained polyacrylamide gels, the negative charges of the acrylamide/acrylate copolymer strongly alter the alignment tensor and lead to pronounced electroosmotic swelling. The swelling itself can be used to achieve anisotropic, mechanical strain. The method is demonstrated for the alignment of TipAS, a 17 kDa antibiotic resistance protein, as well as for human ubiquitin, where alignment tensors with an AZZ,NH of up to 60 Hz are achieved at a gel concentration of 2% (w/v). The alignment can be modulated by the variation of pH, ionic strength, and gel concentration. The high mechanical stability of the swollen gels makes it possible to obtain alignment at polymer concentrations of less than 1% (w/v).  相似文献   

10.
The aim of this work was to assess the effect of formulation parameters of a mucoadhesive vaginal gel based on chitosan and lactic acid, and to highlight its release mechanisms. Two molecular weight chitosans were used to prepare gels with 2 lactic acid concentrations. Both chitosan molecular weight and lactic acid concentration had a significant and mutually dependent influence on mucoadhesion, measured on pig vaginal mucosa. Similarly, the lactate release profiles were found to be dependent on lactic acid content and polymer molecular weight. One gel formulation based on the stoichiometric lactate to chitosan ratio was subjected to release test in media with 2 different counterions and increasing ionic strength. This test demonstrated that the lactate release is mainly due to ionic displacement.  相似文献   

11.
The influence of the ionic strength on the structure of beta-lactoglobulin aggregates formed after heating at pH 7 has been studied using static and dynamic light scattering. The native protein depletion has been monitored using size exclusion chromatography. Above a critical association concentration (CAC) well-defined clusters are formed containing about 100 monomers. The CAC increases with decreasing ionic strength. The so-called primary aggregates associate to form self similar semi-flexible aggregates with a large scale structure that is only weakly dependent on the ionic strength. The local density of the aggregates increases with increasing ionic strength. At a critical gel concentration, Cg, the size of the aggregates diverges. Cg decreases from 100 g/l without added salt to 1 g/l at 0.4M NaCl. For C > Cg the system gels except at high ionic strength close to Cg where the gels collapse under gravity and a precipitate is formed.  相似文献   

12.
Glycol chitosan is a derivative of chitosan that is soluble at neutral pH and possesses potentially useful biological properties. With the goal of obtaining biocompatible hydrogels for use as tissue engineering scaffolds or drug delivery depots, glycol chitosan was converted to a photopolymerizable prepolymer through graft methacrylation using glycidyl methacrylate in aqueous media at pH 9. N-Methacrylation was verified by both (1)H NMR and (13)C NMR. The degree of N-methacrylation, measured via (1)H NMR, was easily varied from 1.5% to approximately 25% by varying the molar ratio of glycidyl methacrylate to glycol chitosan and the reaction time. Using a chondrocyte cell line, the N-methacrylated glycol chitosan was found to be noncytotoxic up to a concentration of 1 mg/mL. The prepolymer was cross-linked in solution using UV light and Irgacure 2959 photoinitiator under various conditions to yield gels of low sol content ( approximately 5%), high equilibrium water content (85-95%), and thicknesses of up to 6 mm. Cross-polarization magic-angle spinning (13)C solid state NMR verified the complete conversion of the double bonds in the gel. Chondrocytes seeded directly onto the gel surface, populated the entirety of the gel and remained viable for up to one week. The hydrogels degraded slowly in vitro in the presence of lysozyme at a rate that increased as the cross-link density of the gels decreased.  相似文献   

13.
Soluble linear (non-cross-linked) poly(monoacryloxyethyl phosphate) (PMAEP) and poly(2-(methacryloyloxy)ethyl phosphate) (PMOEP) were successfully synthesized through reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization and by keeping the molecular weight below 20 K. Above this molecular weight, insoluble (cross-linked) polymers were observed, postulated to be due to residual diene (cross-linkable) monomers formed during purification of the monomers, MOEP and MAEP. Block copolymers consisting of PMAEP or PMOEP and poly(2-(acetoacetoxy)ethyl methacrylate) (PAAEMA) were successfully prepared and were immobilized on aminated slides. Simulated body fluid studies revealed that calcium phosphate (CaP) minerals formed on both the soluble polymers and the cross-linked gels were very similar. Both the PMAEP polymers and the PMOEP gel showed a CaP layer most probably brushite or monetite based on the Ca/P ratios. A secondary CaP mineral growth with a typical hydroxyapatite (HAP) globular morphology was found on the PMOEP gel. The soluble PMOEP film formed carbonated HAP according to Fourier transform infrared (FTIR) spectroscopy. Block copolymers attached to aminated slides showed only patchy mineralization, possibly due to the ionic interaction of negatively charged phosphate groups and protonated amines.  相似文献   

14.
Some physicochemical and functional properties of cardiac myosin were studied in a model system, with particular reference to its binding ability in re-structured meat. We found that myosin solubility was strongly influenced by the pH, ionic strength, and temperature of the system and by the interaction of pH and ionic strength. For instance, myosin remained completely in solution in monomeric form at ionic strengths ≤0.2 M KCl, if the pH of system was maintained at 7.0. Highionic strength was required to keep myosin in monomeric form at low pH. With low ionic strength and pH, myosin molecules tend to form aggregated filaments.

Like skeletal muscle myosin, the heat-induced gel strength of cardiac myosin was also influenced by the pH, ionic strength, and temperature of the system, and it produced a gel with maximum strength (21.× 103dyn/cm2) at pH 5.5 and 0.1 M KCl concentration on heating to 60%C. Cardiac myosin seems to form much stronger gels than skeletal muscle myosin.  相似文献   

15.
Differentially charged analogues of block copolymers containing repeating sequences from silk (GAGAGS) and elastin (GVGVP) were synthesized using genetic engineering techniques by replacing a valine residue with glutamic acid. The sensitivity to pH and temperature was examined at various polymer concentrations, ionic strengths, and polymer lengths. The polymers transitioned from soluble to precipitate state over narrow temperature ranges. The transition temperature T(t) (the temperature at which half-maximal spectrophotometric absorption was observed) increased with increasing pH up to pH 7.0 and leveled off above this value for the Glu-containing polymer (17E)(11). T(t) was independent of pH for the Val-containing polymer (17V)(11). It decreased with increasing ionic strength, polymer concentration, and polymer length for both polymers. These results suggest that by substituting charged amino acids for neutral amino acids at strategic locations in the polymer backbone and by control of the length of silkelastin-like block copolymers using genetic engineering techniques, it is possible to precisely control sensitivity to pH, temperature, and ionic strength.  相似文献   

16.
The adsorption equilibria of bovine serum albumin (BSA), gamma-globulin, and lysozyme to three kinds of Cibacron blue 3GA (CB)-modified agarose gels, 6% agarose gel-coated steel heads (6AS), Sepharose CL-6B, and a home-made 4% agarose gel (4AB), were studied. We show that ionic strength has irregular effects on BSA adsorption to the CB-modified affinity gels by affecting the interactions between the negatively charged protein and CB as well as CB and the support matrix. At low salt concentrations, the increase in ionic strength decreases the electrostatic repulsion between negatively charged BSA and the negatively charged gel surfaces, thus resulting in the increase of BSA adsorption. This tendency depends on the pore size of the solid matrix, CB coupling density, and the net negative charges of proteins (or aqueous - phase pH value). Sepharose gel has larger average pore size, so the electrostatic repulsion-effected protein exclusion from the small gel pores is observed only for the affinity adsorbent with high CB coupling density (15.4 micromol/mL) at very low ionic strength (NaCl concentration below 0.05 M in 10 mM Tris-HCl buffer, pH 7.5). However, because CB-6AS and CB-4AB have a smaller pore size, the electrostatic exclusion effect can be found at NaCl concentrations of up to 0.2 M. The electrostatic exclusion effect is even found for CB-6AS with a CB density as low as 2.38 micromol/mL. Moreover, the electrostatic exclusion effect decreases with decreasing aqueous-phase pH due to the decrease of the net negative charges of the protein. For gamma-globulin and lysozyme with higher isoelectric points than BSA, the electrostatic exclusion effect is not observed. At higher ionic strength, protein adsorption to the CB-modified adsorbents decreases with increasing ionic strength. It is concluded that the hydrophobic interaction between CB molecules and the support matrix increases with increasing ionic strength, leading to the decrease of ligand density accessible to proteins, and then the decrease of protein adsorption. Thus, due to the hybrid effect of electrostatic and hydrophobic interactions, in most cases studied there exists a salt concentration to maximize BSA adsorption.  相似文献   

17.
Physically cross-linked beta-lactoglobulin (BLG) protein gels containing theophylline and sulfamethoxazole low molecular weight drugs were prepared in 50% ethanol solution at pH 8 and two protein concentrations (6 and 7% (w/v)). Swelling behavior of cylindrical gels showed that, irrespective of the hydrated or dehydrated state of the gel, the rate of swelling was the highest in water. When the gels were exposed to water, they first showed a swelling phase in which their weight increased 3 and 30 times for hydrated and dehydrated gels, respectively, due to absorption of water, followed by a dissolution phase. The absorption of solvent was however considerably reduced when the gels were exposed to aqueous buffer solutions. The release behavior of both theophylline and sulfamethoxazole drugs from BLG gels was achieved in a time window ranging from 6 to 24 h. The drug release depended mainly on the solubility of the drugs and the physical state of the gel (hydrated or dry form). Analysis of drug release profiles using the model of Peppas showed that diffusion through hydrated gels was governed by a Fickian process whereas diffusion through dehydrated gels was governed partly by the swelling capacities of the gel but also by the structural rearrangements inside the network occurring during dehydration step. By a judicious selection of protein concentration, hydrated or dehydrated gel state, drug release may be modulated to be engineered suitable for pharmaceutical as well as cosmetics and food applications.  相似文献   

18.
M A Kumar  V L Davidson 《Biochemistry》1990,29(22):5299-5304
Two soluble periplasmic redox proteins from Paracoccus denitrificans, the quinoprotein methylamine dehydrogenase and the copper protein amicyanin, form a weakly associated complex that is critical to their physiological function in electron transport [Gray, K. A., Davidson, V. L., & Knaff, D. B. (1988) J. Biol. Chem. 263, 13987-13990]. The specific interactions between methylamine dehydrogenase and amicyanin have been studied by using the water-soluble cross-linking agent 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). Treatment of methylamine dehydrogenase alone with EDC caused no intermolecular cross-linking but did cause intramolecular cross-linking of this alpha 2 beta 2 oligomeric enzyme. The primary product that was formed contained one large and one small subunit. Methylamine dehydrogenase and amicyanin were covalently cross-linked in the presence of EDC to form at least two distinct species, which were identified by nondenaturing polyacrylamide gel electrophoresis (PAGE). The formation of these cross-linked species was dependent on ionic strength, and the ionic strength dependence was much greater at pH 6.5 than at pH 7.5. The effects of pH and ionic strength were different for the different cross-linked products. SDS-PAGE and Western blot analysis of these cross-linked species indicated that the primary site of interaction for amicyanin was the large subunit of methylamine dehydrogenase and that this association could be stabilized by hydrophobic interactions. In light of these results a scheme is proposed for the interaction of amicyanin with methylamine dehydrogenase that is consistent with previous data on the physical, kinetic, and redox properties of this complex.  相似文献   

19.
A method of purifying the naturally occurring antibody to alpha-galactoside moiety (anti-alpha-Gal) in human plasma by a single-step affinity chromatography on cross-linked guar galactomannan (CLGG) or agarose (Sepharose 4B) is described. IgG nature of the two preparations, as revealed by agar gel diffusion, as well as their preference for alpha-anomer of galactose, as revealed in inhibition of their agglutination of trypsinized rabbit erythrocytes by sugars, identified them with anti-alpha-Gal. The antibody binding capacity of Sepharose 4B was only a third of that of CLGG. Both gels showed similar dependence on ionic strength for binding. The pH optimum for binding of anti-alpha-Gal to CLGG was 8.0. Significantly anti-alpha-Gal binding to Sepharose was unaffected by CNBr activation and ligand coupling to the gel, thus warning that contaminating plasma could introduce artifacts in agarose-based chromatography of human tissue biomolecules.  相似文献   

20.
Shih H  Lin CC 《Biomacromolecules》2012,13(7):2003-2012
Thiol-ene photoclick hydrogels have been used for a variety of tissue engineering and controlled release applications. In this step-growth photopolymerization scheme, four-arm poly(ethylene glycol) norbornene (PEG4NB) was cross-linked with dithiol containing cross-linkers to form chemically cross-linked hydrogels. While the mechanism of thiol-ene gelation was well described in the literature, its network ideality and degradation behaviors are not well-characterized. Here, we compared the network cross-linking of thiol-ene hydrogels to Michael-type addition hydrogels and found thiol-ene hydrogels formed with faster gel points and higher degree of cross-linking. However, thiol-ene hydrogels still contained significant network nonideality, demonstrated by a high dependency of hydrogel swelling on macromer contents. In addition, the presence of ester bonds within the PEG-norbornene macromer rendered thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with experimental results, we found that the hydrolytic degradation of thiol-ene hydrogels was not only governed by ester bond hydrolysis, but also affected by the degree of network cross-linking. In an attempt to manipulate network cross-linking and degradation of thiol-ene hydrogels, we incorporated peptide cross-linkers with different sequences and characterized the hydrolytic degradation of these PEG-peptide hydrogels. In addition, we incorporated a chymotrypsin-sensitive peptide as part of the cross-linkers to tune the mode of gel degradation from bulk degradation to surface erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号