首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel biodegradable hydrogels by photocrosslinking macromers based on chitosan derivative are reported. Photocrosslinkable macromers, a water-soluble (methacryloyloxy) ethyl carboxyethyl chitosan were prepared by Michael-addition reaction between chitosan and ethylene glycol acrylate methacrylate. The macromers were characterized by Fourier transform infrared spectroscopy, (1)H NMR and (13)C NMR. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.1% (w/v) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors was evaluated. The results demonstrated that the degradation rates were affected strongly by crosslinking density. The hydrogel was compatible to Vero cells, not exhibiting significant cytotoxicity. Cell culture assay also demonstrated that the hydrogels were good in promoting the cell attachment and proliferation, showing their potential as tissue engineering scaffolds.  相似文献   

2.
The object of this study was to test the solubility of a methoxy poly(ethylene glycol) (MPEG)-grafted chitosan copolymer in organic solvents and aqueous solution. Water-soluble chitosan with low molecular weight (LMWSC) was used in a PEG-graft copolymerization. The MPEG was conjugated to chitosan using 4-dicyclohexylcarbodimide (DCC), and N-hydroxysuccimide (NHS). Introduction of PEG was confirmed by (1)H and (13)C NMR spectroscopy and FT-IR spectroscopy. The degree of substitution (DS) of MPEG into chitosan was calculated from (1)H NMR data and also by estimating the molecular weight (MW) using gel permeation chromatography (GPC). The DS values obtained from (1)H NMR spectroscopy and GPC were similar, indicating that MPEG-grafted LMWSC was synthesized and properly characterized. Furthermore, the introduction of PEG into chitosan increases the solubility in aqueous solutions over a range of pH values (4.0-11.0) and organic solvents such as DMF, DMSO, ethanol, and acetone.  相似文献   

3.
Biocompatible and pH-responsive poly(ethylene glycol) (PEG)-acrylic acid (AAc) hydrogels were prepared by new technique using γ-irradiation for controlled oral drug delivery. The gel fraction was over 80% and the equal amounts of PEG and AAc blended hydrogel had efficient insulin loading using equilibrium swelling. These hydrogels exhibited unique pH-responsive characteristics in which interpolymer complexes were formed in acidic media and dissociated in neutral or basic environments. The insulin release from the gel was significantly retarded in acidic media while rapid release occurred under neutral/basic conditions. At the high pH solution, the gels swelled rapidly and over 70% of the insulin loaded was released over a period of 10 h. Within 2 h of administration of the insulin-containing gels, significant blood glucose reduction effects were observed in diabetic rats. The blood glucose reduction lasted for up to 10 h following administration.  相似文献   

4.
In situ forming hydrogels based on thermosensitive polymers have attractive properties for tissue engineering. However, the physical interactions in these hydrogels are not strong enough to yield gels with sufficient stability for many of the proposed applications. In this study, additional covalent cross-links were introduced by photopolymerization to improve the mechanical properties and the stability of thermosensitive hydrogels. Methacrylate groups were coupled to the side chains of triblock copolymers (ABA) with thermosensitive poly( N-(2-hydroxypropyl) methacrylamide lactate) A blocks and a hydrophilic poly(ethylene glycol) B block. These polymers exhibit lower critical solution temperature (LCST) behavior in aqueous solution and the cloud point decreased with increasing amounts of methacrylate groups. These methacrylate groups were photopolymerized above the LCST to render covalent cross-links within the hydrophobic domains. The mechanical properties of photopolymerized hydrogels were substantially improved and their stability was prolonged significantly compared to nonphotopolymerized hydrogels. Whereas non-UV-cured gels disintegrated within 2 days at physiological pH and temperature, the photopolymerized gels degraded in 10 to 25 days depending on the degree of cross-linking. To assess biocompatibility, goat mesenchymal stem cells were seeded on the hydrogel surface or encapsulated within the gel and they remained viable as demonstrated by a LIVE/DEAD cell viability/cytotoxicity assay. Expression of alkaline phosphatase and production of collagen I demonstrated the functionality of the mesenchymal stem cells and their ability to differentiate upon encapsulation. Due to the improved mechanical properties, stability, and adequate cytocompatibility, the photopolymerized thermosensitive hydrogels can be regarded as highly potential materials for applications in tissue engineering.  相似文献   

5.
Du JZ  Sun TM  Weng SQ  Chen XS  Wang J 《Biomacromolecules》2007,8(11):3375-3381
Novel biodegradable hydrogels by photo-cross-linking macromers based on polyphosphoesters and poly(ethylene glycol) (PEG) are reported. Photo-cross-linkable macromers were synthesized by ring-opening polymerization of the cyclic phosphoester monomer 2-(2-oxo-1,3,2-dioxaphospholoyloxy) ethyl methacrylate (OPEMA) using PEG as the initiator and stannous octoate as the catalyst. The macromers were characterized by 1H NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography measurements. The content of polyphosphoester in the macromer was controlled by varying the feed ratio of OPEMA to PEG. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.05% (w/w) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors were evaluated. The results demonstrated that cross-linking density and pH values strongly affected the degradation rates. The macromers was compatible to osteoblast cells, not exhibiting significant cytotoxicity up to 0.5 mg/mL. "Live/dead" cell staining assay also demonstrated that a large majority of the osteoblast cells remained viable after encapsulation into the hydrogel constructs, showing their potential as tissue engineering scaffolds.  相似文献   

6.
ABA triblock copolymers [A = 2-(diisopropylamino)ethyl methacrylate), DPA or 2-(diethylamino)ethyl methacrylate), DEA; B = 2-methacryloyloxyethyl phosphorylcholine, MPC] prepared using atom transfer radical polymerization dissolve in acidic solution but form biocompatible free-standing gels at around neutral pH in moderately concentrated aqueous solution (above approximately 10 w/v % copolymer). Proton NMR studies indicate that physical gelation occurs because the deprotonated outer DPA (or DEA) blocks become hydrophobic, which leads to attractive interactions between the chains: addition of acid leads to immediate dissolution of the micellar gel. Release studies using dipyridamole as a model hydrophobic drug indicate that sustained release profiles can be obtained from these gels under physiologically relevant conditions. More concentrated DPA-MPC-DPA gels give slower release profiles, as expected. At lower pH, fast, triggered release can also be achieved, because gel dissolution occurs under these conditions. Furthermore, the nature of the outer block also plays a role; the more hydrophobic DPA-MPC-DPA triblock gels are formed at lower copolymer concentrations and retain the drug longer than the DEA-MPC-DEA triblock gels.  相似文献   

7.
A polymer analogous synthesis involving the reductive amination of phosphorylcholine (PC)-glyceraldehyde with primary amines of deacetylated chitosan (M(w) approximately 57000 g mol(-1)) was used to prepare phosphorylcholine-substituted chitosans (PC-CH) with a degree of substitution (DS) ranging from approximately 11 to approximately 53 mol % PC-substituted glucosamine residues. The PC-CH derivatives were characterized by (1)H NMR spectroscopy, FTIR spectroscopy, and multiangle laser light scattering gel permeation chromatography (MALLS-GPC). The pK(a) of the PC-substituted amine groups (pK(a) approximately 7.20) was determined by (1)H NMR titration. The PC-CH samples (1.0 g L(-1)) were shown to be nontoxic using an MTT assay performed with human KB cells. Aqueous solutions of PC-CH samples (4.0 g L(-1)) of DS >or= 22 mol % PC-substituted glucosamine residues remained clear, independently of pH (4.0 < pH < 11.0). The remarkable water solubility and nontoxicity displayed by the new PC-CH samples open up new opportunities in the design of chitosan-based biomaterials and nanoparticles.  相似文献   

8.
Biocompatible hydrogels based on water-soluble chitosan–ethylene glycol acrylate methacrylate (CS–EGAMA) and polyethylene glycol diamethacrylate (PEGDMA) were synthesized by photopolymerization. Characterization of morphology, weight loss, water state of hydrogel, pH-sensitivity and cytotoxicity were investigated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), swelling test and methylthiazolydiphenyl-tetrazolium bromide (MTT) assay. The results indicated that the hydrogels were sensitive to pH of the medium, no cytotoxicity for L929 and SW1353, satisfactory for the composite to be used in bioapplications.  相似文献   

9.
The aim of this study was to entrap delta-sleep inducing peptide (DSIP) in cross-linked poly(vinyl alcohol)-based hydrogels of different structures and to determine kinetics of the peptide release from these hydrogels using an in vitro model. Isotropic and macroporous hydrogels based on poly(vinyl alcohol) acrylic derivative (Acr-PVA) and also macroporous epoxy groups containing hydrogels synthesized by copolymerization of this macromer and glycidyl methacrylate, have been used in this study. Isotropic hydrogels were prepared at positive temperatures while macroporous ones were obtained by formation in cryo-conditions. The peptide was entrapped into macroporous PVA hydrogels by adding the peptide solution onto preformed matrices, while peptide immobilization on PVA-GMA hydrogels, containing free epoxy groups, was carried out by sorption of peptide from its aqueous solution. In the case of DSIP entrapment into isotropic PVA gel the peptide solution was added into the polymer mixture at hydrogel formation. The kinetics of peptide release from hydrogels was studied by incubating matrices in PBS solution (pH 7.4), in physiological solution (0.9% NaCl) and in water. DSIP concentration in supernatants was determined by reverse-phase HPLC. Incubation of macroporous PVA gels in PBS, 0.9% NaCl, and water for 30 min caused release of 74, 70, and 64% DSIP, respectively, and this processes completed within 3 h. From hydrogel containing epoxy groups the release of neither peptide nor its degradation products was observed even after incubation for 48 h. For freshly prepared isotropic hydrogel the release kinetics was as follows: 27 and 78% DSIP were released within first 30 min and 33 h, relatively. For the lyophilized hydrogel samples the peptide release was 63% after incubation for 30 min, while drying of samples at room temperature for 3 days caused significant peptide loss because of its structure damage.  相似文献   

10.
Summary Streptomyces rimosus cells were immobilized with urethane prepolymers and used in the production of oxytetracycline. Based on the criteria for oxytetracycline productivity, cell growth in gels, cell leakage from gels and mechanical strength of gel, a hydrophilic prepolymer, PU-1, the main chain of which was polyethylene glycol (molecular weight, approximately 1500) was employed as gel material among 11 kinds of urethane prepolymers. Use of glucose-free medium for cultivation of PU-1-entrapped cells increased the production rate of oxytetracycline and minimized cell leakage from the gels. When the gel-entrapped cells lost activity, treatment of the cell-entrapping gels with saline or 70% ethanol resulted in recovery of the oxytetracycline productivity. Continuous oxytetracycline fermentation using PU-1-entrapped growing cells was successfully achieved in air-bubbled reactor for at least 35 days with reactivation of the cells.  相似文献   

11.
In the present study, carboxymethyl chitosan was prepared from chitosan, crosslinked with glutaraldehyde and evaluated in vitro as a potential carrier for colon targeted drug delivery of ornidazole. Ornidazole was incorporated at the time of crosslinking of carboxymethyl chitosan. The chitosan was evaluated for its degree of deacetylation (DD) and average molecular weight; which were found to be 84.6% and 3.5×10(4) Da, respectively. The degree of substitution on prepared carboxymethyl chitosan was found to be 0.68. All hydrogel formulations showed more than 85% and 74% yield and drug loading, respectively. The swelling behaviour of prepared hydrogels checked in different pH values, 1.2, 6.8 and 7.4, indicated pH responsive swelling characteristic with very less swelling at pH 1.2 and quick swelling at pH 6.8 followed by linear swelling at pH 7.4 with slight increase. In vitro release profile was carried out at the same conditions as in swelling and drug release was found to be dependant on swelling of hydrogels and showed biphasic release pattern with non-fickian diffusion kinetics at higher pH. The carboxymethylation of chitosan, entrapment of drug and its interaction in prepared hydrogels were checked by FTIR, (1)H NMR, DSC and p-XRD studies, which confirmed formation of carboxymethyl chitosan from chitosan and absence of any significant chemical change in ornidazole after being entrapped in crosslinked hydrogel formulations. The surface morphology of formulation S6 checked before and after dissolution, revealed open channel like pores formation after dissolution.  相似文献   

12.
An amphiphilic hydrogel network was synthesized from a cross-linked poly(2-hydroxyethyl methacrylate) backbone copolymerized with the monomers 3-(trimethoxysilyl)propyl methacrylate (PMA) and dimethylaminoethyl methacrylate (DMAEMA) using tetraethylene glycol diacrylate (TEGDA) as cross-linker and using the radical initiator system comprising N,N,N',N'-tetramethylethylenediamine and ammonium peroxydisulfate. The degree of hydration of hydrogel slabs was investigated as functions of varying monomer compositions and cross-link density and as a function of pH and ionic strength of the bathing medium. As much as a 45% increase in hydration was observed for hydrogels containing 15 mol % DMAEMA upon reducing the pH of the bathing medium from 8.0 to 2.0. This confirms the pH-modulated swelling of amine-containing hydrogels. Increasing the concentration of TEGDA cross-linker from 3 to 12 mol % in a 10 mol % DMAEMA-containing hydrogel resulted in only a 10% reduction in the degree of hydration of the gel. There was, however, a 40-50% reduction in the degree of hydration of a 15 mol % DMAEMA hydrogel upon increasing the molar composition of PMA from 0 up to 20 mol %. The presence of PMA confers hydrophobic character that reduces hydration and introduces additional cross-links that reduce network mesh size. The water content of the hydrogel was consistently higher in buffers of lower ionic strength. The reversible pH-dependent swelling observed in these studies, along with the control of cross-link density afforded by the PMA component, endows these biocompatible materials with potential for use in pH-controlled drug delivery of more hydrophobic drugs and present new compositions for in vitro and in vivo biocompatibility studies.  相似文献   

13.
Facile synthesis and detailed characterization of photopolymerizable and biocompatible poly(ethylene glycol) dimethacrylates (PEGDM) and poly(ethylene glycol) urethane-dimethacrylates (PEGUDM) are described. Poly(ethylene glycol)s of various molecular masses (M(n) = 1000 to 8000 g/mol) were reacted with methacrylic anhydride or with 2-isocyanatoethyl methacrylate to form PEGDMs and PEGUDMs, respectively. PEGDMs were also prepared by a microwave-assisted route to achieve fast reaction conversions under solvent free conditions. Combined analyses of (1)H NMR and MALDI-TOF MS confirmed the formation of prepolymers of high purity and narrow mass distribution (PD < 1.02). Aqueous solutions of the PEGDMs and PEGUDMs (10% and 20% by mass fraction) were photopolymerized to yield hydrogels. Bovine chondrocytes, seeded in the hydrogels, were used to assess the biocompatibility. Preliminary rheology and uniaxial compression measurements showed varied mechanical response, and biocompatibility studies showed that cells are completely viable in both types of hydrogels after two weeks.  相似文献   

14.
Novel superabsorbent hydrogels were manufactured using chemically modified cashew gum (CGMA) and acrylamide (AAm) as reactants. The route for the synthesis was feasible due to the incorporation of glycidyl methacrylate (GMA) into structure of cashew gum (CG) to form the cashew gum-methacrylated (CGMA), in an appropriate mixture water-DMSO, as solvent, and using TEMED as catalyst. Thereafter, the CGMA was copolymerized with AAm yielding (CGMA-co-AAm) hydrogels. The main characteristics of raw and the modified materials are reported in this paper. 13C NMR, 1H NMR and FTIR spectroscopies confirmed the incorporation of vinyl groups, from GMA, into CG structure. By the spectrophotometry analyses, it was found that, ca. 82% of GMA was incorporated to the CG after 24 h of reaction. The cross-linking of CGMA or co-polymerization of CGMA with acrylamide leads to a hydrogel formation. Their gelation was characterized by FT-IR analysis. Alkaline hydrolysis at 40 °C for 3 and 4.5 h increased the water uptake (WU) capacity. Hydrolyzed CGMA-co-AAm hydrogels present higher values of WU (up to 1500) and may be classified as water superabsorbent material. Applications in agriculture, as soil conditioner, and in biomedical field, as biomaterial (scaffold) are being investigated.  相似文献   

15.
Hydrogels have been successfully used to entrap hydrophilic drugs and release them in a controlled fashion; however, the entrapment and release of hydrophobic drugs has not been well studied. We report on the release characteristics of a model hydrophobic drug, the steroid hormone estradiol, entrapped in low (MW 360/MW 550) and high (MW 526/MW 1000) molecular weight poly(ethylene glycol) methacrylate (PEG-MA)/dimethacrylate (PEG-DMA) hydrogels. The cross-linking ratio, temperature, and pH ranged from 10:1 to 10:3, from 33 to 41 degrees C, and from 2 to 12, respectively. The gelation of the PEG-MA/PEG-DMA hydrogel was initiated with UV irradiation. The absence of poly(glutamic acid) in the hydrogel formulation resulted in a loss of pH sensitivity in the acidic range, which was displayed by the hydrogels' similarities in swelling ratios in the pH buffers of pH 2, 4, and 7. Use of high molecular weight polymers resulted in a higher hydrogel swelling (300%) in comparison to the low molecular weight polymers. Drug size was found to be a significant factor. In comparison to 100% estradiol (MW 272) release, the fractional release of insulin (MW 5733) was 12 and 24% in low and high molecular weight gels at pH 2, respectively, and 17% in low molecular weight gels at pH 7. On the release kinetics of the estradiol drug, the hydrogels displayed a non-Fickian diffusion mechanism, which indicated that the media penetration rate is in the same range as the drug diffusion. The synthesis, entrapment, and release of estradiol by the PEG-MA/PEG-DMA hydrogels proved to be successful, but the use of ethanol in the buffers to promote the hydrophobic release of the estradiol in the in vitro environment caused complications, attributed to the process of transesterification.  相似文献   

16.
A series of hybrid hydrogels based on glycidyl methacrylated chitosan (CS-GMA) and N-isopropylacrylamide (NIPAAm) were designed and prepared via photopolymerization technology. The hydrogels were characterized by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and optical transmittance. The interior morphology of hydrogels was investigated by scanning electron microscopy (SEM). The swelling experiment results revealed that hybrid hydrogel exhibited combined pH and temperature sensitivities. Acid orange 8 (AO8) and 5-flurouracil (5-Fu) were selected as model drugs for examining their release from hydrogels. The results suggested that hydrogel composition and pH value of buffer solution had great influences on release profiles.  相似文献   

17.
Controlled osmotic swelling and de-swelling measurements have been performed on gelatin, a polyampholyte, hydrogels suspended in water-ethanol marginal solvent at room temperature (20 degrees C) where the alcohol concentration was changed from 0 to 100% (v/v). The change in gel mass was monitored as function of time until osmotic equilibrium was established with the surrounding solvent. It was observed that osmotic pressure of polymer-solvent mixing, pi(m)相似文献   

18.
Guo X  Deng F  Li L  Prud'homme RK 《Biomacromolecules》2008,9(6):1637-1642
We report the synthesis of biocompatible polymeric hydrogels based on poly(vinyl acetate) (PVAc) and poly(methyl vinyl ether-co-maleic anhydride) (PMVE-MA). These polymeric hydrogels show strong and tunable adhesion to both hydrophobic and hydrophilic surfaces and should be ideal candidates as bioadhesives for applications such as denture adhesion. PVAc was partially hydrolyzed and then mixed with PMVE-MA. Crosslinking between these two polymers through reactions between hydroxyl groups in partially hydrolyzed PVAc and maleic anhydride groups in PMVE-MA increased their compatibility and prevented phase separation so transparent hydrogels were formed. The adhesion of these polymeric hydrogels to hydrophobic and hydrophilic surfaces was tailored by regulating the degree of hydrolysis of PVAc and the molecular weights of the polymers. In the vicinity of critical gel point, where the elastic modulus G' and the viscous modulus G' scale as G' approximately G' approximately omega (0.3), polymeric hydrogels show optimal adhesion. Transparent gels are formed in mixed solvents of water and ethanol. The content of ethanol in the mixed solvent can be partially replaced by propylene glycol, glycerol, or poly(ethenyl glycol)-400, and the composition of appropriate mixed solvents can be determined by the calculation of solubility parameters.  相似文献   

19.
Temperature and pH-responsive hydrogels based on chitosan grafted with poly acrylic acid (PAAc), poly hydroxy propyl methacrylate (PHPMA), poly (vinyl alcohol) (PVA) and gelatin were prepared for controlled drug delivery. These stimuli-responsive hydrogels were synthesized by gamma irradiation technique. The degree of gelation was over 90% and increased as chitosan, AAc and PVA content increased, while the degree of gelation decrease with the increase of gelatin content. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of 2–9 was investigated. An increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 9. Also antibiotic drug Oxttetracycline was loaded into the hydrogels and the release studies were carried out at different pH and temperature. The in vitro release profiles of the drug showed that, the release of the drug increased as the time, temperature and pH increased and reached to maximum after 48 h at pH 9. The prepared hydrogels were characterized by using SEM, FTIR, and DSC.  相似文献   

20.
alpha,beta-Poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA), a synthetic water-soluble biocompatible polymer, was derivatized with glycidyl methacrylate (GMA), in order to introduce in its structure chemical residues having double bonds and ester groups. The obtained copolymer (PHG) contained 29 mol% of GMA residues. PHG aqueous solutions at various concentrations ranging from 30 to 70 mg/ml were exposed to a source of UV rays at lambda 254 nm in the presence or in the absence of N,N'-methylenebisacrylamide (BIS); the formation of compact gel phases was observed beginning from 50 mg/ml. The obtained networks were characterized by FT-IR spectrophotometry and swelling measurements which evidenced the high affinity of PHG hydrogels towards aqueous media at different pH values. In vitro chemical or enzymatic hydrolysis studies suggested that the prepared samples undergo a partial degradation both at pH 1 and pH 10 and after incubation with enzymes such as esterase, pepsin and alpha-chymotrypsin. Finally, the effect of irradiation time on the yield and the properties of these hydrogels was investigated and the sol fractions coming from irradiated samples, properly purified, were characterized by FT-IR and 1H-NMR analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号