首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Two acetylcholinesterase genes, Ace1 and Ace2, have been fully cloned and sequenced from both organophosphate-resistant and susceptible clones of cotton aphid. Comparison of both nucleic acid and deduced amino acid sequences revealed considerable nucleotide polymorphisms. Further study found that two mutations occurred consistently in all resistant aphids. The mutation F139L in Ace2 corresponding to F115S in Drosophila acetylcholinesterase might reduce the enzyme sensitivity and result in insecticide resistance. The other mutation A302S in Ace1 abutting the conserved catalytic triad might affect the activity and insecticide sensitivity of the enzyme. Phylogenetic analysis showed that insect acetylcholinesterases fall into two subgroups, of which Ace1 is the paralogous gene whereas Ace2 is the orthologous gene of Drosophila AChE. Both subgroups contain resistance-associated AChE genes. To avoid confusion in the future work, a nomenclature of insect AChE is also suggested in the paper.  相似文献   

2.
Apple grain aphid, Rhopalosiphum padi (Linnaeus), is an important wheat pest. In China, it has been reported that R. padi has developed high resistance to carbamate and organophosphate insecticides. Previous work cloned from this aphid 2 different genes encoding acetylcholinesterase (AChE), which is the target enzyme for carbamate and organophosphate insecticides, and its insensitive alteration has been proven to be an important mechanism for insecticide resistance in other insects. In this study, both resistant and susceptible strains of R, padi were developed, and their AChEs were compared to determine whether resistance resulted from this mechanism and whether these 2 genes both play a role in resistance. Bioassays showed that the resistant strain used was highly or moderately resistant to pirimicarb, omethoate, and monocrotophos (resistance ratio, 263.8, 53.8, and 17.5, respectively), and showed little resistance to deltamethrin or thiodicarb (resistance ratio, 5.2 and 3.4, respectively). Correspondingly, biochemistry analysis found that AChE from resistant aphids was very insensitive to the first 3 insecticides (I50 increased 43.0-, 15.2-, and 8.8-fold, respectively), but not to thiodicarb (I50 increased 1.1-fold). Enzyme kinetics tests showed that resistant and susceptible strains had different AChEs. Sequence analysis of the 2 AChE genes cloned from resistant and susceptible aphids revealed that 2 mutations in Ace2 and 1 in Ace1 were consistently associated with resistance. Mutation F368(290)L in Ace2 localized at the same position as a previously proven resistance mutation site in other insects. The other 2 mutations, S329(228)P in Ace1 and V435(356)A in Ace2, were also found to affect the enzyme structure. These findings indicate that resistance in this aphid is mainly the result of insensistive AChE alteration, that the 3 mutations found might contribute to resistance, and that the AChEs encoded by both genes could serve as targets of insecticides.  相似文献   

3.
4.
Acetylcholinesterase (AChE), encoded by the Ace gene, is the primary target of organophosphorous (OP) and carbamate insecticides. Ace mutations have been identified in OP resistants strains of Drosophila melanogaster. However, in the Australian sheep blowfly, Lucilia cuprina, resistance in field and laboratory generated strains is determined by point mutations in the Rop-1 gene, which encodes a carboxylesterase, E3. To investigate the apparent bias for the Rop-1/E3 mechanism in the evolution of OP resistance in L. cuprina, we have cloned the Ace gene from this species and characterized its product. Southern hybridization indicates the existence of a single Ace gene in L. cuprina. The amino acid sequence of L. cuprina AChE shares 85.3% identity with D. melanogaster and 92.4% with Musca domestica AChE. Five point mutations in Ace associated with reduced sensitivity to OP insecticides have been previously detected in resistant strains of D. melanogaster. These residues are identical in susceptible strains of D. melanogaster and L. cuprina, although different codons are used. Each of the amino acid substitutions that confer OP resistance in D. melanogaster could also occur in L. cuprina by a single non-synonymous substitution. These data suggest that the resistance mechanism used in L. cuprina is determined by factors other than codon bias. The same point mutations, singly and in combination, were introduced into the Ace gene of L. cuprina by site-directed mutagenesis and the resulting AChE enzymes expressed using a baculovirus system to characterise their kinetic properties and interactions with OP insecticides. The K(m) of wild type AChE for acetylthiocholine (ASCh) is 23.13 microM and the point mutations change the affinity to the substrate. The turnover number of Lucilia AChE for ASCh was estimated to be 1.27x10(3) min(-1), similar to Drosophila or housefly AChE. The single amino acid replacements reduce the affinities of the AChE for OPs and give up to 8.7-fold OP insensitivity, while combined mutations give up to 35-fold insensitivity. However, other published studies indicate these same mutations yield higher levels of OP insensitivity in D. melanogaster and A. aegypti. The inhibition data indicate that the wild type form of AChE of L. cuprina is 12.4-fold less sensitive to OP inhibition than the susceptible form of E3, suggesting that the carboxylesterases may have a role in the protection of AChE via a sequestration mechanism. This provides a possible explanation for the bias towards the evolution of resistance via the Rop-1/E3 mechanism in L. cuprina.  相似文献   

5.
6.
Fei Li  Zhao-Jun Han 《Génome》2002,45(6):1134-1141
Two acetylcholinesterase (AChE) genes, Ace1 and Ace2, have been cloned from cotton aphid, Aphis gossypii Glover, using the rapid amplification of cDNA ends (RACE) technique. To the best of our knowledge, this should be the first direct molecular evidence that multiple AChE genes exist in insects. The Ace1 gene was successfully amplified along its full length of 2371 bp. The open reading frame is 2031 bp long and encodes 676 amino acids (GenBank accession No. AF502082). The Ace2 gene was amplified as a mega-fragment of 2130 bp lacking part of 5'-end untranslated region (UTR). The open reading frame is 1992 bp long and ecodes a protein of 664 amino acids (GenBank accession No. AF502081). Both genes have the conserved amino acids and features shared by the AChE family, but share only 35% identity in amino acid sequence. The Ace1 gene is highly homologous to the AChE gene of Schizaphis graminum (AF321574) with 95% identity, and Ace2 to that of Myzus persicae (AF287291) with 92% identity. Phylogenetic analysis showed that the two cloned AChEs of A. gossypii are different in evolution. The phylogenetic tree generated by the PHYLIP program package inferred that AChE2 of A. gossypii is a more ancestral form of AChE. Homology modeling of structures using Torpedo californica (2ACE_) and Drosophila melanogaster (1Q09:A) native acetylcholinesterase structure as main template indicated that the two AChEs of Aphis gossypii might have different three-dimensional structures. Alternative splicing of Ace1 near the 5'-end resulting in two proteins differing by the presence or absence of a fragment of four amino acids is also reported.  相似文献   

7.
8.
Traditionally in Australia, regular applications of insecticide to the floors and lower walls of broiler houses after cleanout periods have been used in an attempt to control lesser mealworm, Alphitobius diaperinus (Panzer). The Australian chicken meat industry has been concerned in recent years with the failure to control A. diaperinus in its broiler houses by using this method and with large beetle populations breaching farm biosecurity. Resistance to fenitrothion was suspected to be responsible for these recent control failures. In response, beetles from 13 poultry facilities were compared with an insecticide-susceptible reference population by using a topical application method. Generally, strong resistance to fenitrothion (up to 79 times that of the susceptible at the LC50) occurred in populations of A. diaperinus in long-established broiler growing areas of southeastern Queensland, where fenitrothion had been used continuously for up to 20 yr. In newly established broiler growing areas, where considerably less fenitrothion had been used (i.e., approximately 5 yr), much weaker or no resistance occurred. In addition, dose-mortality data generated for the susceptible reference beetle population over a range of fenitrothion concentrations showed that 0.15% fenitrothion at a LC(99.9) level could be used as a convenient topical dose concentration to discriminate between susceptible and resistant individuals. Using this method, the susceptibility of 27 field populations of A. diaperinus was determined. Of this total, 23 populations did not exhibit complete mortality against the discriminating concentration (mortality range 0-98.7%). Application of fenitrothion in Australian broiler houses for control of A. diaperinus has now ceased.  相似文献   

9.
Insensitive acetylcholinesterase (AChE) was determined to be involved in an EPN-resistant (ER) strain and a contaminated susceptible (CS) strain of diamondback moth (DBM, Plutella xylostella L.), as estimated by AChE inhibition assay using DDVP as a inhibitor in a nondenaturing electrophoresis gel. The ER strain exhibited very high AChE insensitivity, high resistance ratio, and two point mutations (G324A, A298S) in ace1-type AChE gene (Pxace1). The CS strain showed low AChE insensitivity, low resistance ratio, and it has only one point mutation (G324A). These findings suggest that the A298S mutation, along with reported G324A mutation (Baek et al, 2005), can be important in the development of organophosphate resistance. These results also suggest that the A298S mutation could be a good candidate for a molecular diagnosis marker for resistance monitoring. Three molecular diagnosis methods (Quantitative Sequencing; QS, PCR amplification of specific alleles; PASA and restriction fragment length polymorphism; RFLP) were developed which successfully detected specific resistance associated point mutations. Seven local population DBMs were surveyed and showed high insecticide resistance levels and a A298S mutation in Pxace1. These methods can be used to monitor the resistance allele in field population of DBMs and resistance management strategy.  相似文献   

10.
Acetylcholinesterase (AChE), encoded by the Ace gene, is the primary target of organophosphates (OPs) and carbamates (CBs) in insects. Ace mutations have been identified in OP and CB resistant strains of Musca domestica. In this study, the Ace gene was partially amplified and sequenced at amino acid positions 260, 342, and 407 to determine the frequencies of these mutations in housefly samples collected from farms and garbage disposal sites of 16 provinces in the Aegean and Mediterranean regions of Turkey. In addition, the percent remaining AChE activities in these samples were assayed by using three OPs (malaoxon, paraoxon, and dichlorvos) and one CB (carbaryl) compound as inhibitors. In all the analyzed samples, 13 different combinations at the three amino acid positions were identified and the L/V260-A/G342-F/Y407 combination was found in the highest frequency. No susceptible individual was detected. The highest mean percent remaining AChE activities were detected in the individuals having the L260-A/G342-F/Y407 genotype when malaoxon and paraoxon were used as inhibitors and in the individuals with the L260-A342-F/Y407 combination when dichlorvos and carbaryl were used as inhibitors. The obtained data were heterogeneous and there was no exact correlation between the molecular genetic background and the resistance phenotypes of the flies. The findings of this study at the molecular and biochemical levels indicate the presence of significant control problems in the field.  相似文献   

11.
InCulex pipiens mosquitoes, AChE1 encoded by the locusAce.1 is the target of organophosphorus and carbamate insecticides. In several resistant strains homozygous forAce.1 RR , insensitive AChE1 is exclusively found. An unusual situation occurs in two Caribbean resistant strains where each mosquito, at each generation, displays a mixture of sensitive and insensitive AChE1. These mosquitoes are not heterozygotes,Ace.1 RS , as preimaginal mortalities cannot account for the lethality of both homozygous classes. This situation is best explained by the existence of twoAce.1 loci, coding, respectively, a sensitive and an insensitive AChE1. Thus, we suggest that in the Caribbean a duplication of theAce.1 locus occurred before the appearance of insecticide resistance at one of the two copies.  相似文献   

12.
Acetylcholinesterase (AChE) is the target enzyme of organophosphorus and carbamate insecticides. We applied trichlorfon to select resistant strains of Bactrocera dorsalis Hendel in the laboratory. Two trichlorfon-resistant strains, the Tri-R1 strain with 18.23-fold resistance and the Tri-R2 strain with 69.5-fold resistance, were obtained. Three known mutations, I159V, G433S and Q588R were identified in AChE of two resistant strains, and a novel mutation, G365A, was identified in the more resistant Tri-R2 strain. The modeled 3-D-structure of AChE showed that G365A and G433S are closely adjacent in the gorge above the catalytic site S235. Mutations of G365A and G433S resulted in a steric hindrance by stronger Van der Waals force between two sites. Such a minor structural change might block insecticides from squeezing through the gorge to reach the active site, but not the natural substrate. Compared with the susceptible strain, the AChE activity of the Tri-R1 strain and the Tri-R2 strain was 0.87- and 0.67-fold, the K m value of the Tri-R1 strain and the Tri-R2 strain was 0.11- and 0.10-fold, the V max value of two resistant strains was 0.26- and 0.15-fold, whereas, the I 50 to trichlorfon significantly increased by 9.07- and 13.19-fold. These results suggested that the novel point mutation G365A of AChE might be involved in increasing resistance to trichlorfon in the resistant strain of oriental fruit fly.  相似文献   

13.
Functionally constrained genes are ideal insecticide targets because disruption is often fatal, and resistance mutations are typically costly. Synaptic acetylcholinesterase (AChE) is an essential neurotransmission enzyme targeted by insecticides used increasingly in malaria control. In Anopheles and Culex mosquitoes, a glycine–serine substitution at codon 119 of the Ace‐1 gene confers both resistance and fitness costs, especially for 119S/S homozygotes. G119S in Anopheles gambiae from Accra (Ghana) is strongly associated with resistance, and, despite expectations of cost, resistant 119S alleles are increasing significantly in frequency. Sequencing of Accra females detected only a single Ace‐1 119S haplotype, whereas 119G diversity was high overall but very low at non‐synonymous sites, evidence of strong purifying selection driven by functional constraint. Flanking microsatellites showed reduced diversity, elevated linkage disequilibrium and high differentiation of 119S, relative to 119G homozygotes across up to two megabases of the genome. Yet these signals of selection were inconsistent and sometimes weak tens of kilobases from Ace‐1. This unexpected finding is attributable to apparently ubiquitous amplification of 119S alleles as part of a large copy number variant (CNV) far exceeding the size of the Ace‐1 gene, whereas 119G alleles were unduplicated. Ace‐1 CNV was detectable in archived samples collected when the 119S allele was rare in Ghana. Multicopy amplification of resistant alleles has not been observed previously and is likely to underpin the recent increase in 119S frequency. The large CNV compromised localization of the strong selective sweep around Ace‐1, emphasizing the need to integrate CNV analysis into genome scans for selection.  相似文献   

14.
We first record Carcinops troglodytes (Paykull) as a predator of Alphitobius diaperinus (Panzer) larvae in poultry houses in North and Northwest regions of the state of Paraná. Carcinops spp. are commonly recorded as predators of dipterans, and this record in poultry houses indicates the possibility of exploiting such predator for future studies aiming the development of management strategies for A. diaperinus.  相似文献   

15.
Trials were conducted during one year under field conditions to control the lesser mealworm, Alphitobius diaperinus (Panzer), in broiler and turkey houses. The tested combined treatment included an adulticidal compound (pyrethroid: cyfluthrin) and a larvicidal compound (insect growth regulator [IGR]: triflumuron). The combined insecticide treatment greatly reduced the adult and larval stocks throughout the different broiler growing periods, and control of A. diaperinus populations was achieved by the end of the second treatment. Control of the insect population in a turkey house was not similar. A reestablishment of the insect population was observed during the second turkey growing period in summer. Building characteristics and management practices of the breeding system (duration of the breeding period, management of the litter) interact with the combined insecticide treatment and lead to a different efficiency.  相似文献   

16.
Insensitive acetylcholinesterase (AChE) is involved in the resistance of organophosphorous and carbamate insecticides. We cloned a novel full-length AChE cDNA encoding ace1 gene from adult heads of the diamondback moth (DBM, Plutella xylostella). The ace1 gene encoding 679 amino acids has conserved motifs including catalytic triad, choline-binding site and acyl pocket. Northern blot analysis revealed that the ace1 gene was expressed much higher than the ace2 in all examined body parts. The biochemical properties of expressed AChEs showed substrate specificity for acetylthiocholine iodide and inhibitor specificity for BW284C51 and eserine. Three mutations of AChE1 (D229G, A298S, and G324A) were identified in the prothiofos-resistant strain, two of which (A298S and G324A) were expected to be involved in the prothiofos-resistance through three-dimensional modeling. In vitro functional expression of AChEs in Sf9 cells revealed that only resistant AChE1 is less inhibited with paraoxon, suggesting that resistant AChE1 is responsible for prothiofos-resistance.  相似文献   

17.
林楠  周杰  周盈  汪世华 《微生物学通报》2014,41(5):1011-1019
【目的】结合现有数据,通过对两株临床超级广泛耐药的结核分枝杆菌全基因组的测序和分析,发现其型别相关的突变位点,解释发生广泛耐药的基因组突变机制。【方法】利用Solexa第二代测序技术对两株广泛耐药结核分枝杆菌(FJ05194和GuangZ0019)进行全基因组测序分析。以H37Rv为参考序列得到两株广泛耐药菌株的单核苷酸多态性(SNPs),构建系统发育树鉴定菌株型别,判断突变位点中型别相关和非型别相关的SNPs。定位SNPs所在的基因组区域,对型别相关的突变基因进行KEGG通路的富集分析,对非型别相关的突变基因和间隔区判断是否与耐药相关。【结果】两株广泛耐药菌株分别属于Lineage2和Lineage4型别,两菌株在碱基替换方面存在差异性,Lineage2型别相关的基因功能富集于ABC转运蛋白和核苷酸切除修复的通路。耐药方面,发现了已知的耐药相关基因的突变(rpoB、katG、rpsl、gyrA、gyrB、embB和ethA等),但卷曲霉素和卡那霉素相关的rrs、tlyA和eis启动子区域未发生突变,不足以解释其耐药性的产生。与最新报道的候选耐药基因比较,发现了卷曲霉素和卡那霉素相关的突变(Rv1393c、Rv0265c和narX等)和外排泵相关的pstB、Rv2333c和Rv2687c突变。【结论】结核分枝杆菌Lineage2型别相关的SNPs中含有影响结核分枝杆菌突变率和耐药性的突变。对于两株超级广泛耐药的结核菌,已知的激活药物或药靶相关的单耐药基因突变集合不能完全解释其广泛耐药性,还涉及新候选结核耐药基因、外排泵和补偿等其他潜在机制的相关基因突变。  相似文献   

18.
Two full-length genes encoding different acetylcholinesterases (AChEs), designated as Ch-ace1 and Ch-ace2, were cloned from strains of the rice stem borer (Chilo suppressalis) susceptible and resistant to the organophosphate insecticide triazophos. Sequence analysis found an amino acid mutation A314S in Ch-ace1 (corresponding to A201 in Torpedo californica AChE) that was consistently associated with the occurrence of resistance. This mutation removed an MspA1 I restriction site from the wild type allele. An assay based on restriction fragment length polymorphism (RFLP) analysis was developed to diagnose A314S genotypes in field populations. Results showed a strong correlation between frequencies of the mutation and phenotypic levels of resistance to triazophos. The assay offers a prospect for rapid monitoring of resistance and assisting with the appropriate choice of insecticide for combating damage caused by C. suppressalis.  相似文献   

19.
Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91–94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.  相似文献   

20.
Lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), adults were collected from six eastern Texas broiler facilities and examined for susceptibility to four formulated insecticides. Data indicate that A. diaperinus adults exposed to filter papers treated with the label rates of the insecticides exhibit some level of recovery. Approximately 20% or less A. diaperinus adults treated with Tempo SC Ultra (8 ml/92.9 m2, 11.8% beta-cyfluthrin) or Talstar WP Insecticide/Miticide (23.3 ml/92.9 m2, 10% bifenthrin) and recorded as moribund at the 4-h observation period recovered by the 24-h observation period. A. diaperinus adults treated with Tempo SC Ultra and Talstar WP also had the greatest percentage of mortality for both observation periods. A. diaperinus adults treated with Dragnet SFR (49.7 ml/92.9 m2, 36.8% permethrin) had the greatest level of recovery at approximately 50-60% overall, which was similar to that recorded for the water-only control. Additionally, five of the six A. diaperinus populations treated with Dragnet SFR resulted in < 10% mortality for both observation periods. Unlike the other insecticides examined, Talstar Professional Insecticide (10 ml/92.9 m2, "Talstar Pro," 7.9% bifenthrin) resulted in approximately 50% more A. diaperinus mortality at the 24-h than the 4-h observation period due primarily to increased mortality recorded for Farm F. A. diaperinus adults from farm D had > or = 87% knockdown 4 h after treatment to all compounds examined, indicating a high degree of sensitivity to these compounds. However, approximately 90% of the A. diaperinus adults from this population treated with Dragnet SFR and recorded as moribund recovered by the 24-h observation. A. diaperinus adults from this population treated with the other insecticides exhibited limited recovery. Susceptible adult A. diaperinus populations are still present in Texas, based on the populations examined. But, identifying these populations is difficult and time-consuming. Consequently, screening populations before treatment might not be feasible. However, newer generation pyrethroids examined in this study seem to be suitable for suppressing A. diaperinus populations in broiler facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号