首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 800 毫秒
1.
Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (gamma-Glu-Cys)(n) moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and gamma-glutamyl cysteine (gamma-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3Delta strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n = 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn(2+) enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.  相似文献   

2.
Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA‐producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural‐occurring source plants. Thus, to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co‐expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA‐accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation and seedling development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon co‐expression of SfLPAT with EcCPS, di‐CPA‐PC increased by ~50% relative to lines expressing EcCPS alone with the di‐CPA‐PC primarily observed in the embryonic axis and mono‐CPA‐PC primarily in cotyledon tissue. EcCPS‐SfLPAT lines revealed a redistribution of CPA from the sn‐1 to sn‐2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. The identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.  相似文献   

3.
3‐amino‐benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coliE. coli co‐culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co‐culture system was found to improve 3AB production by 15 fold, compared to the mono‐culture approach. Further engineering of the co‐culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co‐culture engineering can be a powerful new approach in the broad field of metabolic engineering.  相似文献   

4.
Thomas U. Schwartz 《Proteins》2013,81(11):1857-1861
His‐tag affinity purification is one of the most commonly used methods to purify recombinant proteins expressed in E. coli. One drawback of using the His‐tag is the co‐purification of contaminating histidine‐rich E. coli proteins. We engineered a new E. coli expression strain, LOBSTR (lo w b ackground str ain), which eliminates the most abundant contaminants. LOBSTR is derived from the E. coli BL21(DE3) strain and carries genomically modified copies of arnA and slyD, whose protein products exhibit reduced affinities to Ni and Co resins, resulting in a much higher purity of the target protein. The use of LOBSTR enables the pursuit of challenging low‐expressing protein targets by reducing background contamination with no additional purification steps, materials, or costs, and thus pushes the limits of standard His‐tag purifications. Proteins 2013; 81:1857–1861. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and three Escherichia coli strains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicated E. coli strain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L?1 acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis.  相似文献   

6.
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one‐step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3′‐phosphoadenosine‐5′‐phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least‐explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000‐fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin‐4‐sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4‐fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS‐accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one‐step microbial synthesis of CS. This will provide a new platform to produce CS.  相似文献   

7.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

8.
Significant achievements in polyketide gene expression have made Escherichia coli one of the most promising hosts for the heterologous production of pharmacologically important polyketides. However, attempts to produce glycosylated polyketides, by the expression of heterologous sugar pathways, have been hampered until now by the low levels of glycosylated compounds produced by the recombinant hosts. By carrying out metabolic engineering of three endogenous pathways that lead to the synthesis of TDP sugars in E. coli, we have greatly improved the intracellular levels of the common deoxysugar intermediate TDP‐4‐keto‐6‐deoxyglucose resulting in increased production of the heterologous sugars TDP‐L‐mycarose and TDP‐d ‐desosamine, both components of medically important polyketides. Bioconversion experiments carried out by feeding 6‐deoxyerythronolide B (6‐dEB) or 3‐α‐mycarosylerythronolide B (MEB) demonstrated that the genetically modified E. coli B strain was able to produce 60‐ and 25‐fold more erythromycin D (EryD) than the original strain K207‐3, respectively. Moreover, the additional knockout of the multidrug efflux pump AcrAB further improved the ability of the engineered strain to produce these glycosylated compounds. These results open the possibility of using E. coli as a generic host for the industrial scale production of glycosylated polyketides, and to combine the polyketide and deoxysugar combinatorial approaches with suitable glycosyltransferases to yield massive libraries of novel compounds with variations in both the aglycone and the tailoring sugars.  相似文献   

9.
Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment‐friendly, and cost‐effective production of these value‐added products without the reliance on petroleum. In this study, rationally designed E. coli–E. coli co‐culture systems were established for converting glycerol to 3‐hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineered E. coli strains. The co‐culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co‐culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with the E. coli mono‐culture, the optimized co‐culture showed 5.3‐fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co‐culture engineering for addressing the challenges of aromatic compound biosynthesis.  相似文献   

10.
Due to its availability, low‐price, and high degree of reduction, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. Using the platform we have established from the identification of key pathways mediating fermentative metabolism of glycerol, this work reports the engineering of Escherichia coli for the conversion of glycerol into 1,2‐propanediol (1,2‐PDO). A functional 1,2‐PDO pathway was engineered through a combination of overexpression of genes involved in its synthesis from the key intermediate dihydroxyacetone phosphate (DHAP) and the manipulation of the fermentative glycerol utilization pathway. The former included the overexpression of methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde oxidoreductase (yqhD). Manipulation of the glycerol utilization pathway through the replacement of the native E. coli PEP‐dependent dihydroxyacetone kinase (DHAK) with an ATP‐dependent DHAK from C. freundii increased the availability of DHAP allowing for higher 1,2‐PDO production. Analysis of the major fermentative pathways indentified ethanol as a required co‐product while increases in 1,2‐PDO titer and yield were achieved through the disruption of the pathways for acetate and lactate production. Combination of these key metabolic manipulations resulted in an engineered E. coli strain capable of producing 5.6 g/L 1,2‐PDO, at a yield of 21.3% (w/w). This strain also performed well when crude glycerol, a by‐product of biodiesel production, was used as the substrate. The titer and yield achieved in this study were favorable to those obtained with the use of E. coli for the production of 1,2‐PDO from common sugars. Biotechnol. Bioeng. 2011; 108:867–879. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
Phytochelatins (PCs) with good binding affinities for a wide range of heavy metals were exploited to develop microbial sorbents for cadmium removal. PC synthase from Schizosaccharomyces pombe (SpPCS) was overexpressed in Escherichia coli, resulting in PC synthesis and 7.5-times-higher Cd accumulation. The coexpression of a variant γ-glutamylcysteine synthetase desensitized to feedback inhibition (GshI*) increased the supply of the PC precursor glutathione, resulting in further increases of 10- and 2-fold in PC production and Cd accumulation, respectively. A Cd transporter, MntA, was expressed with SpPCS and GshI* to improve Cd uptake, resulting in a further 1.5-fold increase in Cd accumulation. The level of Cd accumulation in this recombinant E. coli strain (31.6 μmol/g [dry weight] of cells) was more than 25-fold higher than that in the control strain.  相似文献   

12.
The twin arginine translocation (Tat) pathway occurs naturally in E. coli and has the distinct ability to translocate folded proteins across the inner membrane of the cell. It has the potential to export commercially useful proteins that cannot be exported by the ubiquitous Sec pathway. To better understand the bioprocess potential of the Tat pathway, this article addresses the fermentation and downstream processing performances of E. coli strains with a wild‐type Tat system exporting the over‐expressed substrate protein FhuD. These were compared to strains cell‐engineered to over‐express the Tat pathway, since the native export capacity of the Tat pathway is low. This low capacity makes the pathway susceptible to saturation by over‐expressed substrate proteins, and can result in compromised cell integrity. However, there is concern in the literature that over‐expression of membrane proteins, like those of the Tat pathway, can impact negatively upon membrane integrity itself. Under controlled fermentation conditions E. coli cells with a wild‐type Tat pathway showed poor protein accumulation, reaching a periplasmic maximum of only 0.5 mg L?1 of growth medium. Cells over‐expressing the Tat pathway showed a 25% improvement in growth rate, avoided pathway saturation, and showed 40‐fold higher periplasmic accumulation of FhuD. Moreover, this was achieved whilst conserving the integrity of cells for downstream processing: experimentation comparing the robustness of cells to increasing levels of shear showed no detrimental effect from pathway over‐expression. Further experimentation on spheroplasts generated by the lysozyme/osmotic shock method—a scaleable way to release periplasmic protein—showed similar robustness between strains. A scale‐down mimic of continuous disk‐stack centrifugation predicted clarifications in excess of 90% for both intact cells and spheroplasts. Cells over‐expressing the Tat pathway performed comparably to cells with the wild‐type system. Overall, engineering E. coli cells to over‐express the Tat pathway allowed for greater periplasmic yields of FhuD at the fermentation scale without compromising downstream processing performance. Biotechnol. Bioeng. 2012; 109:983–991. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel‐like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high‐yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high‐yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain‐length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain‐lengths and functionalities. Biotechnol. Biotechnol. Bioeng. 2014;111: 849–857. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Aims: Bioremediation of highly arsenic (As)‐contaminated soil is difficult because As is very toxic for plants and micro‐organisms. The aim of this study was to investigate soil arsenic removal effects using poplar in combination with the inoculation of a plant growth–promoting rhizobacterium (PGPR). Methods and Results: A rhizobacterium D14 was isolated and identified within Agrobacterium radiobacter. This strain was highly resistant to arsenic and produced indole acetic acid and siderophore. Greenhouse pot bioremediation experiments were performed for 5 months using poplar (Populus deltoides LH05‐17) grown on As‐amended soils, inoculated with strain D14. The results showed that P. deltoides was an efficient arsenic accumulator; however, high As concentrations (150 and 300 mg kg?1) inhibited its growth. With the bacterial inoculation, in the 300 mg kg?1 As‐amended soils, 54% As in the soil was removed, which was higher than the uninoculated treatments (43%), and As concentrations in roots, stems and leaves were significantly increased by 229, 113 and 291%, respectively. In addition, the As translocation ratio [(stems + leaves)/roots = 0·8] was significantly higher than the uninoculated treatments (0·5). About 45% As was translocated from roots to the above‐ground tissues. The plant height and dry weight of roots, stems and leaves were all enhanced; the contents of chlorophyll and soluble sugar, and the activities of superoxide dismutase and catalase were all increased; and the content of a toxic compound malondialdehyde was decreased. Conclusions: The results indicated that the inoculation of strain D14 could contribute to the increase in the As tolerance of P. deltoides, promotion of the growth, increase in the uptake efficiency and enhancement of As translocation. Significance and Impact of the Study: The use of P. deltoides in combination with the inoculation of strain D14 provides a potential application for efficient soil arsenic bioremediation.  相似文献   

15.
Heterologous production of naringenin, a valuable flavonoid with various biotechnological applications, was well studied in the model organisms such as Escherichia coli or Saccharomyces cerevisiae. In this study, a synergistic co‐culture system was developed for the production of naringenin from xylose by engineering microorganism. A long metabolic pathway was reconstructed in the co‐culture system by metabolic engineering. In addition, the critical gene of 4‐coumaroyl‐CoA ligase (4CL) was simultaneously integrated into the yeast genome as well as a multi‐copy free plasmid for increasing enzyme activity. On this basis, some factors related with fermentation process were considered in this study, including fermented medium, inoculation size and the inoculation ratio of two microbes. A yield of 21.16 ± 0.41 mg/L naringenin was produced in this optimized co‐culture system, which was nearly eight fold to that of the mono‐culture of yeast. This is the first time for the biosynthesis of naringenin in the co‐culture system of S. cerevisiae and E. coli from xylose, which lays a foundation for future study on production of flavonoid.  相似文献   

16.
琥珀酸作为一种重要的C4平台化合物,广泛应用于食品、化学、医药等领域。利用大肠杆菌(Escherichia coli)发酵生产琥珀酸受胞内辅因子不平衡的影响,存在产率低、生产强度低、副产物多等问题。为此,对不同氧气条件下琥珀酸产量和化学计量学分析发现,微厌氧条件下E.coli FMME-N-26高效积累琥珀酸需要借助三羧酸循环(tricarboxylic acid cycle,TCA)为还原性三羧酸途径(reductive tricarboxylic acid pathway,r-TCA)提供足够的ATP和NADH。通过减少ATP消耗、强化ATP合成、阻断NADH竞争途径和构建NADH回补路径等代谢工程策略,组合调控胞内ATP与NADH含量,获得工程菌株E.coli FW-17。通过发酵条件优化,菌株E.coli FW-17在5 L发酵罐能积累139.52 g/L琥珀酸,比出发菌株提高了17.81%,乙酸浓度为1.40 g/L,降低了67.59%。进一步在1000 L发酵罐中进行放大实验,琥珀酸产量和乙酸浓度分别为140.2 g/L和1.38 g/L。  相似文献   

17.
  • Aquatic macrophytes are potentially useful for phytoremediation programmes in environments contaminated by arsenic (As). Biochemical and physiological modification analyses in different plant parts are important to understand As tolerance mechanisms.
  • The objective was to evaluate glutathione metabolism in leaves and roots of Eichhornia crassipes (Mart.) Solms treated to As. Specimens of E. crassipes were cultured for 3 days in Clark's nutrient solution containing 7 μm As. The enzymes ATP sulphurylase (ATPS), glutathione reductase (GR), glutathione peroxidase (GSH‐Px), glutathione sulphotransferase (GST) and γ‐glutamylcysteine synthetase (γ‐ECS) activity, glutathione content, total protein and non‐protein thiols were evaluated.
  • The ATPS activity increased in roots. GR activity in leaves and GSH‐Px in roots were lower. GST activity was higher in roots and lower in leaves, and γ‐ECS activity was higher in leaves. Glutathione levels were lower, total thiol levels were higher and non‐protein levels did not change in E. crassipes leaves and roots. Exposure to As increased enzyme activity involved with sulphur metabolism, such as ATPS. Higher GR activity and lower GSH‐Px indicate increased glutathione conjugation to As due to increased GSH availability. The higher GST activity indicates its participation in As detoxification and accumulation through As GSH conjugation. Changes in glutathione and thiol levels suggest high phytochelatin synthesis.
  • In conclusion, the increments in ATPS, GR, GST and γ‐ECS activity indicate that these enzymes are involved in GSH metabolism and are part of the E. crassipes As detoxification mechanism.
  相似文献   

18.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

19.
Phytochelatin synthase (PCS), the key enzyme involved in heavy metal detoxification and accumulation has been used from various sources to develop transgenic plants for the purpose of phytoremediation. However, some of the earlier studies provided contradictory results. Most of the PCS genes were isolated from plants that are not potential metal accumulators. In this study, we have isolated PCS gene from Ceratophyllum demersum cv. L. (CdPCS1), a submerged rootless aquatic macrophyte, which is considered as potential accumulator of heavy metals. The CdPCS1 cDNA of 1,757?bp encodes a polypeptide of 501 amino acid residues and differs from other known PCS with respect to the presence of a number of cysteine residues known for their interaction with heavy metals. Complementation of cad1-3 mutant of Arabidopsis deficient in PC (phytochelatin) biosynthesis by CdPCS1 suggests its role in the synthesis of PCs. Transgenic tobacco plants expressing CdPCS1 showed several-fold increased PC content and precursor non-protein thiols with enhanced accumulation of cadmium (Cd) and arsenic (As) without significant decrease in plant growth. We conclude that CdPCS1 encodes functional PCS and may be part of metal detoxification mechanism of the heavy metal accumulating plant C. demersum. KEY MESSAGE: Heterologous expression of PCS gene from C. demersum complements Arabidopsis cad1-3 mutant and leads to enhanced accumulation of Cd and As in transgenic tobacco.  相似文献   

20.
Arsenic hyperaccumulator Pteris vittata L. (Chinese brake fern) grows well in arsenic-contaminated media, with an extraordinary ability to tolerate high levels of arsenic. An expression cloning strategy was employed to identify cDNAs for the genes involved in arsenic resistance in P. vittata. Excised plasmids from the cDNA library of P. vittata fronds were introduced into Escherichia coli XL-1 Blue and plated on medium containing 4 mM of arsenate, a common form of arsenic in the environment. The deduced amino acid sequence of an arsenate-resistant clone, PV4-8, had cDNA highly homologous to plant cytosolic triosephosphate isomerases (cTPI). Cell-free extracts of PV4-8 had 3-fold higher level of triosephosphate isomerase (TPI) specific activities than that found in E. coli XL-1 Blue and had a 42 kD fusion protein immunoreactive to polyclonal antibodies raised against recombinant Solanum chacoense cTPI. The PV4-8 cDNA complemented a TPI-deficient E. coli mutant. PV4-8 expression improved arsenate resistance in E. coli WC3110, a strain deficient in arsenate reductase but not in AW3110 deficient for the whole ars operon. This is consistent with the hypothesis that PV4-8 TPI increased arsenate resistance in E. coli by directly or indirectly functioning as an arsenate reductase. When E. coli tpi gene was expressed in the same vector, bacterial arsenate resistance was not altered, indicating that arsenate tolerance was specific to P. vittata TPI. Paradoxically, P. vittata TPI activity was not more resistant to inhibition by arsenate in vitro than its bacterial counterpart suggesting that arsenate resistance of conventional TPI reaction was not the basis for the cellular arsenate resistance. P. vittata TPI activity was inhibited by incubation with reduced glutathione while bacterial TPI was unaffected. Consistent with cTPI’s role in arsenate reduction, bacterial cells expressing fern TPI had significantly greater per cent of cellular arsenic as arsenite compared to cells expressing E. coli TPI. Excised frond tissue infiltrated with arsenate reduced arsenate significantly more under light than dark. This research highlights a novel role for P. vittata cTPI in arsenate reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号