首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3‐amino‐benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coliE. coli co‐culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co‐culture system was found to improve 3AB production by 15 fold, compared to the mono‐culture approach. Further engineering of the co‐culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co‐culture engineering can be a powerful new approach in the broad field of metabolic engineering.  相似文献   

2.
Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and three Escherichia coli strains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicated E. coli strain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L?1 acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis.  相似文献   

3.
Aims: Escherichia coli has emerged as a viable heterologous host for the production of complex, polyketide natural compounds. In this study, polyketide biosynthesis was compared between different E. coli strains for the purpose of better understanding and improving heterologous production. Methods and Results: Both B and K‐12 E. coli strains were genetically modified to support heterologous polyketide biosynthesis [specifically, 6‐deoxyerythronolide B (6dEB)]. Polyketide production was analysed using a helper plasmid designed to overcome rare codon usage within E. coli. Each strain was analysed for recombinant protein production, precursor consumption, by‐product production, and 6dEB biosynthesis. Of the strains tested for biosynthesis, 6dEB production was greatest for E. coli B strains. When comparing biosynthetic improvements as a function of mRNA stability vs codon bias, increased 6dEB titres were observed when additional rare codon tRNA molecules were provided. Conclusions: Escherichia coli B strains and the use of tRNA supplementation led to improved 6dEB polyketide titres. Significance and Impact of the Study: Given the medicinal potential and growing field of polyketide heterologous biosynthesis, the current study provides insight into host‐specific genetic backgrounds and gene expression parameters aiding polyketide production through E. coli.  相似文献   

4.
We have previously reported in vivo biosynthesis of polylactic acid (PLA) and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] employing metabolically engineered Escherichia coli strains by the introduction of evolved Clostridium propionicum propionyl-CoA transferase (Pct Cp ) and Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1 Ps6-19). Using this in vivo PLA biosynthesis system, we presently report the biosynthesis of PHAs containing 2-hydroxybutyrate (2HB) monomer by direct fermentation of a metabolically engineered E. coli strain. The recombinant E. coli ldhA mutant XLdh strain expressing PhaC1 Ps6-19 and Pct Cp was developed and cultured in a chemically defined medium containing 20 g/L of glucose and varying concentrations of 2HB and 3HB. PHAs consisting of 2HB, 3HB, and a small fraction of lactate were synthesized. Their monomer compositions were dependent on the concentrations of 2HB and 3HB added to the culture medium. Even though the ldhA gene was completely deleted in the chromosome of E. coli, up to 6 mol% of lactate was found to be incorporated into the polymer depending on the culture condition. In order to synthesize PHAs containing 2HB monomer without feeding 2HB into the culture medium, a heterologous metabolic pathway for the generation of 2HB from glucose was constructed via the citramalate pathway, in which 2-ketobutyrate is synthesized directly from pyruvate and acetyl-CoA. Introduction of the Lactococcus lactis subsp. lactis Il1403 2HB dehydrogenase gene (panE) into E. coli allowed in vivo conversion of 2-ketobutyrate to 2HB. The metabolically engineered E. coli XLdh strain expressing the phaC1437, pct540, cimA3.7, and leuBCD genes together with the L. lactis Il1403 panE gene successfully produced PHAs consisting of 2HB, 3HB, and a small fraction of lactate by varying the 3HB concentration in the culture medium. As the 3HB concentration in the medium increased the 3HB monomer fraction in the polymer, the polymer content increased. When Ralstonia eutropha phaAB genes were additionally expressed in this recombinant E. coli XLdh strain, P(2HB-co-3HB-co-LA) having small amounts of 2HB and LA monomers could also be produced from glucose as a sole carbon source. The metabolic engineering strategy reported here should be useful for the production of PHAs containing 2HB monomer.  相似文献   

5.
Aims: Paromamine is a vital and common intermediate in the biosynthesis of 4,5 and 4,6‐disubstituted 2‐deoxystreptamine (DOS)‐containing aminoglycosides. Our aim is to develop an engineered Escherichia coli system for heterologous production of paromamine. Methods and Results: We have constructed a mutant of E. coli BL21 (DE3) by disrupting glucose‐6‐phosphate isomerase (pgi) of primary metabolic pathway to increase glucose‐6‐phosphate pool inside the host. Disruption was carried out by λ Red/ET recombination following the protocol mentioned in the kit. Recombinants bearing 2‐deoxy‐scyllo‐inosose (DOI), DOS and paromamine producing genes were constructed from butirosin gene cluster and heterologously expressed in engineered host designed as E. coli BL21 (DE3) Δpgi. Secondary metabolites produced by the recombinants fermentated in 2YTG medium were extracted, and analysis of the extracts showed there is formation of DOI, DOS and paromamine. Conclusions: Escherichia coli system is engineered for heterologous expression of paromamine derivatives of aminoglycoside biosynthesis. Significance and Impact of the Study: This is the first report of heterologous expression of paromamine gene set in E. coli. Hence a new platform is established in E. coli system for the production of paromamine which is useful for the exploration of novel aminoglycosides by combinatorial biosynthesis of 4,5‐ and 4,6‐disubtituted route of DOS‐containing aminoglycosides.  相似文献   

6.
Heterologous production of naringenin, a valuable flavonoid with various biotechnological applications, was well studied in the model organisms such as Escherichia coli or Saccharomyces cerevisiae. In this study, a synergistic co‐culture system was developed for the production of naringenin from xylose by engineering microorganism. A long metabolic pathway was reconstructed in the co‐culture system by metabolic engineering. In addition, the critical gene of 4‐coumaroyl‐CoA ligase (4CL) was simultaneously integrated into the yeast genome as well as a multi‐copy free plasmid for increasing enzyme activity. On this basis, some factors related with fermentation process were considered in this study, including fermented medium, inoculation size and the inoculation ratio of two microbes. A yield of 21.16 ± 0.41 mg/L naringenin was produced in this optimized co‐culture system, which was nearly eight fold to that of the mono‐culture of yeast. This is the first time for the biosynthesis of naringenin in the co‐culture system of S. cerevisiae and E. coli from xylose, which lays a foundation for future study on production of flavonoid.  相似文献   

7.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

8.
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one‐step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3′‐phosphoadenosine‐5′‐phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least‐explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000‐fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin‐4‐sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4‐fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS‐accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one‐step microbial synthesis of CS. This will provide a new platform to produce CS.  相似文献   

9.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

10.
t‐Butyl 6‐cyano‐(3R,5R)‐dihydroxyhexanoate ((3R,5R)‐ 2 ) is a key chiral diol precursor of atorvastatin calcium (Lipitor®). We have constructed a Kluyveromyces lactis aldo‐keto reductase mutant KlAKR‐Y295W/W296L (KlAKRm) by rational design in previous research, which displayed high activity and excellent diastereoselectivity (dep > 99.5%) toward t‐butyl 6‐cyano‐(5R)‐hydroxy‐3‐oxohexanoate ((5R)‐ 1 ). To realize in situ cofactor regeneration, a robust KlAKRm and Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) co‐producer E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm was constructed in this work. Under the optimized conditions, AKR and GDH activities of E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm peaked at 249.9 U/g DCW (dry cellular weight) and 29100 U/g DCW, respectively. It completely converted (5R)‐ 1 at substrate loading size of up to 60.0 g/L (5R)‐ 1 in the absence of exogenous NADH, which was one‐fifth higher than that of the separately prepared KlAKRm and EsGDH under the same conditions. In this manner, a biocatalytic process for (3R,5R)‐ 2 with productivity of 243.2 kg/m3 d was developed. Compared with the combination of separate expressed KlAKRm with EsGDH, co‐expression of KlAKRm and EsGDH has the advantages of alleviating cell cultivation burden and elevating substrate load. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1235–1242, 2017  相似文献   

11.
An operon encoding enzymes responsible for degradation of the EPA priority contaminant para‐nitrophenol (PNP) from Pseudomonas sp. ENV2030 contains more genes than would appear to be necessary to mineralize PNP. To determine some necessary genes for PNP degradation, the genes encoding the proposed enzymes in the degradation pathway (pnpADEC) were assembled into a broad‐host‐range, BioBricks‐compatible vector under the control of a constitutive promoter. These were introduced into Escherichia coli DH10b and two Pseudomonas putida strains, one with a knockout of the aromatic transport TtgB and the parent with the native transporter. The engineered strains were assayed for PNP removal. E. coli DH10b harboring several versions of the refactored pathway was able to remove PNP from the medium up to a concentration of 0.2 mM; above which PNP was toxic to E. coli. A strain of P. putida harboring the PNP pathway genes was capable of removing PNP from the medium up to 0.5 mM. When P. putida harboring the native PNP degradation cluster was exposed to PNP, pnpADEC were induced, and the resulting production of β‐ketoadipate from PNP induced expression of its chromosomal degradation pathway (pcaIJF). In contrast, pnpADEC were expressed constitutively from the refactored constructs because none of the regulatory genes found in the native PNP degradation cluster were included. Although P. putida harboring the refactored construct was incapable of growing exclusively on PNP as a carbon source, evidence that the engineered pathway was functional was demonstrated by the induced expression of chromosomal pcaIJF. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
Two strains of Escherichia coli were engineered to accumulate pyruvic acid from two sugars found in lignocellulosic hydrolysates by knockouts in the aceE, ppsA, poxB, and ldhA genes. Additionally, since glucose and xylose are typically consumed sequentially due to carbon catabolite repression in E. coli, one strain (MEC590) was engineered to grow only on glucose while a second strain (MEC589) grew only on xylose. On a single substrate, each strain generated pyruvate at a yield of about 0.60 g/g in both continuous culture and batch culture. In a glucose‐xylose mixture under continuous culture, a consortium of both strains maintained a pyruvate yield greater than 0.60 g/g when three different concentrations of glucose and xylose were sequentially fed into the system. In a fed‐batch process, both sugars in a glucose‐xylose mixture were consumed simultaneously to accumulate 39 g/L pyruvate in less than 24 h at a yield of 0.59 g/g.  相似文献   

13.
(?)‐5‐Epieremophilene, an epimer of the versatile sesquiterpene (+)‐valencene, is an inaccessible natural product catalyzed by three sesquiterpene synthases (SmSTPSs1‐3) of the Chinese medicinal herb Salvia miltiorrhiza, and its biological activity remains less explored. In this study, three metabolically engineered Escherichia coli strains were constructed for (?)‐5‐epieremophilene production with yields of 42.4–76.0 mg/L in shake‐flask culture. Introducing an additional copy of farnesyl diphosphate synthase (FDPS) gene through fusion expression of SmSTPS1‐FDPS or dividing the FDP synthetic pathway into two modules resulted in significantly improved production, and ultimately 250 mg of (?)‐5‐epieremophilene were achieved. Biological assay indicated that (?)‐5‐epieremophilene showed significant antifeedant activity against Helicoverpa armigera (EC50=1.25 μg/cm2), a common pest of S. miltiorrhiza, implying its potential defensive role in the plant. The results provided an ideal material supply for studying other potential biological activities of (?)‐5‐epieremophilene, and also a strategy for manipulating terpene production in engineered E. coli using synthetic biology.  相似文献   

14.
Production of monoclonal antibodies (mAbs) receives considerable attention in the pharmaceutical industry. There has been an increasing interest in the expression of mAbs in Escherichia coli for analytical and therapeutic applications in recent years. Here, a modular synthetic biology approach is developed to rationally engineer E. coli by designing three functional modules to facilitate high‐titer production of immunoglobulin G (IgG). First, a bicistronic expression system is constructed and the expression of the key genes in the pyruvate metabolism is tuned by the technologies of synthetic sRNA translational repression and gene overexpression, thus enhancing the cellular material and energy metabolism of E. coli for IgG biosynthesis (module 1). Second, to prevent the IgG biodegradation by proteases, the expression of a number of key proteases is identified and inhibited via synthetic sRNAs (module 2). Third, molecular chaperones are co‐expressed to promote the secretion and folding of IgG (module 3). Synergistic integration of the three modules into the resulting recombinant E. coli results in a yield of the full‐length IgG ≈150 mg L?1 in a 5L fed‐batch bioreactor. The modular synthetic biology approach could be of general use in the production of recombinant mAbs.  相似文献   

15.
Aims:  To explain the basis for false negative β‐glucuronidase reactions seen with culture media containing lactose as a carbon and energy source. Methods and Results:  Escherichia coli strains were assessed for their reactions in culture media containing a β‐d ‐glucuronidase substrate either with or without lactose. An assay was developed to test for the expression of β‐d ‐glucuronidase at pH 5·0 and pH 7·2. Strains of E. coli that gave false negative glucuronidase reactions on media containing lactose generally expressed lower concentrations of the enzyme β‐d ‐glucuronidase than strains that gave positive results, although the difference was by no means consistent. Most strains that were negative on lactose‐containing media expressed virtually no β‐d ‐glucuronidase activity at pH 5·0. Examination of colonies on Membrane lactose glucuronide agar (MLGA) from lightly polluted water showed that c. 10% of the E. coli present failed to yield green colonies on MLGA. Conclusions:  E. coli that failed to produce green colonies on MLGA produced lower levels of β‐d ‐glucuronidase than did strains that formed green colonies, the difference being greater at pH 5·0 than pH 7·2. The false negative rate for E. coli 10% which is similar to that experienced in the study that originally described MLGA. Significance and Impact of the Study:  Strains of E. coli that fail to produce typical colonies on MLGA might produce lower concentrations of the enzyme β‐d ‐glucuronidase. Whilst the enzyme activity is sufficient to be detected at pH 7·2, fermentation of lactose significantly lowers the pH of the medium and can result in reduced enzyme activity and therefore lack of detection. The false negative rate of c. 10% would be difficult to detect in routine laboratories as it would represent 1% or less of yellow colonies being identified as E. coli (assuming E. coli accounts for 10% of the total coliform population in drinking water).  相似文献   

16.
17.
D‐Glucaric acid can be produced as a value‐added chemical from biomass through a de novo pathway in Escherichia coli. However, previous studies have identified pH‐mediated toxicity at product concentrations of 5 g/L and have also found the eukaryotic myo‐inositol oxygenase (MIOX) enzyme to be rate‐limiting. We ported this pathway to Saccaromyces cerevisiae, which is naturally acid‐tolerant and evaluate a codon‐optimized MIOX homologue. We constructed two engineered yeast strains that were distinguished solely by their MIOX gene – either the previous version from Mus musculus or a homologue from Arabidopsis thaliana codon‐optimized for expression in S. cerevisiae – in order to identify the rate‐limiting steps for D‐glucaric acid production both from a fermentative and non‐fermentative carbon source. myo‐Inositol availability was found to be rate‐limiting from glucose in both strains and demonstrated to be dependent on growth rate, whereas the previously used M. musculus MIOX activity was found to be rate‐limiting from glycerol. Maximum titers were 0.56 g/L from glucose in batch mode, 0.98 g/L from glucose in fed‐batch mode, and 1.6 g/L from glucose supplemented with myo‐inositol. Future work focusing on the MIOX enzyme, the interplay between growth and production modes, and promoting aerobic respiration should further improve this pathway.  相似文献   

18.

Aims

To determine the herd prevalence of Enterobacteriaceae producing CTX‐M‐type extended‐spectrum β‐lactamases (ESBLs) among 381 dairy farms in Japan.

Methods and Results

Between 2007 and 2009, we screened 897 faecal samples using BTB lactose agar plates containing cefotaxime (2 μg ml?1). Positive isolates were tested using ESBL confirmatory tests, PCR and sequencing for CTX‐M, AmpC, TEM and SHV. The incidence of Enterobacteriaceae producing CTX‐M‐15 (= 7), CTX‐M‐2 (= 12), CTX‐M‐14 (= 3), CMY‐2 (= 2) or CTX‐M‐15/2/14 and CMY‐2 (= 4) in bovine faeces was 28/897 (3·1%) faecal samples. These genes had spread to Escherichia coli (= 23) and three genera of Enterobacteriaceae (= 5). Herd prevalence was found to be 20/381 (5·2%) dairy farms. The 23 E. coli isolates showed clonal diversity, as assessed by multilocus sequence typing and pulsed‐field gel electrophoresis. The pandemic E. coli strain ST131 producing CTX‐M‐15 or CTX‐M‐27 was not detected.

Conclusions

Three clusters of CTX‐M (CTX‐M‐15, CTX‐M‐2, CTX‐M‐14) had spread among Japanese dairy farms.

Significance and Impact of the Study

This is the first report on the prevalence of multidrug‐resistant CTX‐M‐15–producing E. coli among Japanese dairy farms.  相似文献   

19.
Aim: To isolate eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) genes from Shewanella baltica MAC1 and to examine recombinant production of EPA and DHA in E. coli to investigate cost‐effective, sustainable and convenient alternative sources for fish oils. Methods and Results: A fosmid library was prepared from the genomic DNA of S. baltica MAC1 and was screened for EPA and DHA genes by colony hybridization using a partial fragment of the S. baltica MAC1 pfaA and pfaD genes as probes. Analysis of total fatty acids isolated from transgenic E. coli positive for pfaA and pfaD genes by gas chromatography and gas chromatography‐mass spectrometry indicated recombinant production of both EPA and DHA. Analysis of the complete nucleotide sequence for the isolated gene cluster showed 16 putative open reading frames (ORFs). Among those, four ORFs showed homology with pfaA, pfaB, pfaC and pfaD genes of the EPA and/or DHA biosynthesis gene clusters; however, the protein domains of these genes were different from other EPA/DHA biosynthesis genes. Conclusions: The EPA and DHA gene cluster was cloned successfully. The transgenic E. coli strain carrying the omega‐3 gene cluster was able to produce both EPA and DHA. The isolated gene cluster contained all the genes required for the recombinant production of both EPA and DHA in E. coli. Significance and Impact of the Study: These findings have implications for any future use of the EPA and DHA gene cluster in other micro‐organisms, notably those being used for fermentation. Recombinant production of both EPA and DHA by E. coli or any other micro‐organism has great potential to add economic value to a variety of industrial and agricultural products.  相似文献   

20.
Scyllo‐inositol (SI), a stereoisomer of inositol, is regarded as a promising therapeutic agent for Alzheimer's disease. Here, an in vitro cofactor‐balance biotransformation for the production of SI from myo‐inositol (MI) by thermophilic myo‐inositol 2‐dehydrogenase (IDH) and scyllo‐inositol 2‐dehydrogenase (SIDH) is presented. These two enzymes (i.e., IDH and SIDH from Geobacillus kaustophilus) are co‐expressed in Escherichia coli BL21(DE3), and E. coli cells containing the two enzymes are permeabilized by heat treatment as whole‐cell catalysts to convert MI to SI. After condition optimizations about permeabilized temperature, reaction temperature, and initial MI concentration, about 82 g L?1 of SI is produced from 250 g L?1 of MI within 24 h without any cofactor supplementation. This final titer of SI produced is the highest to the authors’ limited knowledge. This study provides a promising method for the large‐scale industrial production of SI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号