首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a simple, single-step, single-tube, and rapid method for introducing a series of mutations into cloned DNA. Polymerase chain reaction (PCR)-based mutagenesis methods have become very prevalent due to their simplicity and efficiency for introducing mutations. Our method, overlap-primer-walk PCR, has several advantages over other published methods. It uses two common oligodeoxyribonucleotides and a series of overlapping primers specific for various mutations. Once common flanking primers are selected, two to three mutations require only one additional primer. Therefore, this method is very useful for introduction of multiple mutations in various sites of the target DNA. We illustrate the usefulness of the method by introducing several mutations into the human TNF-α encoding gene.  相似文献   

2.

Background  

In protein engineering, site-directed mutagenesis methods are used to generate DNA sequences with mutated codons, insertions or deletions. In a widely used method, mutations are generated by PCR using a pair of oligonucleotide primers designed with mismatching nucleotides at the center of the primers. In this method, primer-primer annealing may prevent cloning of mutant cDNAs. To circumvent this problem we developed an alternative procedure that does not use forward-reverse primer pair in the same reaction.  相似文献   

3.
Site-directed mutagenesis (SDM) has been widely used for studying the structure and function of proteins. A one-step polymerase chain reaction (PCR)-based multiple site-directed plasmid mutagenesis method with extended non-overlapping sequence at the 3′ end of the primer increases the PCR amplification efficiency and the capacity of multi-site mutagenesis. Here, we introduced silent restriction sites in the primers used in this PCR-based SDM method by utilizing SDM-Assist software to generate mutants of Helicobacter pylori neutrophil-activating protein (HP-NAP), whose gene has low GC content. The HP-NAP mutants were efficiently generated by this modified mutagenesis method and quickly identified by a simple restriction digest due to the presence of the silent restriction site. This modified PCR-based SDM method with the introduction of a silent restriction site on the primer is efficient for generation and identification of mutations in the gene of interest.  相似文献   

4.
A rapid method is described to efficiently perform site-directed mutagenesis based on overlap extension polymerase chain reaction (OE-PCR). Two template DNA molecules in different orientations relative to only one universal primer were amplified in parallel. By choosing a high dilution of mutagenic primers it was possible to run an overlap extension PCR in only one reaction without purification of intermediate products. This method which we have named one-step overlap extension PCR (OOE-PCR) can in principle be applied to every DNA fragment which can be cloned into a multiple cloning site of any common cloning vector.  相似文献   

5.
Site-directed PCR-based mutagenesis methods are widely used to generate mutations. All published methods work on DNA clones carrying the target sequence. However, DNA clones are not always available. We have previously published a RT-PCR-based site-directed mutagenesis method starting from total RNA to overcome this problem. In this article, we report an improvement of our previous method to facilitate introduction of multiple mutations into a target sequence. We demonstrate the efficacy and feasibility of this strategy by mutation of the human β-actin gene. BamHI restriction endonuclease cleavage sites were generated within the gene to assist screening. Using three mutagenic primers in a single RT-PCR reaction, seven different clones were produced carrying three single and four multiple mutations. An investigation of the effect of the cycle number and elongation time of the PCR reactions revealed that both have an influence on the ratio of clones carrying single and multiple mutations. An optimized protocol was established for efficient multiple site-directed mutagenesis.  相似文献   

6.
目的:建立一种高效便捷的定点突变方法,为基因表达调控以及蛋白质结构和功能的研究提供技术支撑。方法:以构建单核细胞增生李斯特菌(Listeria monocytogenes)中编码胆碱水解酶(bile salt hydrolase,BSH)的bsh基因突变启动子为例,采用一对完全互补并带有突变位点的引物扩增携带bsh基因启动子的重组质粒DNA全序列,通过DpnⅠ消化PCR产物中剩余的甲基化的模板DNA,酶切后的PCR产物直接转化大肠杆菌,从而获得含有突变启动子的重组质粒。结果:通过一步法定点突变技术成功构建了bsh基因的三种突变启动子。结论:该方法简单高效,只要把握好对引物设计,高保真的DNA聚合酶、模板DNA的浓度以及PCR扩增程序的选择,突变成功率可以达到100%。  相似文献   

7.
Overlap extension represents a new approach to genetic engineering. Complementary oligodeoxyribonucleotide (oligo) primers and the polymerase chain reaction are used to generate two DNA fragments having overlapping ends. These fragments are combined in a subsequent 'fusion' reaction in which the overlapping ends anneal, allowing the 3' overlap of each strand to serve as a primer for the 3' extension of the complementary strand. The resulting fusion product is amplified further by PCR. Specific alterations in the nucleotide (nt) sequence can be introduced by incorporating nucleotide changes into the overlapping oligo primers. Using this technique of site-directed mutagenesis, three variants of a mouse major histocompatibility complex class-I gene have been generated, cloned and analyzed. Screening of mutant clones revealed at least a 98% efficiency of mutagenesis. All clones sequenced contained the desired mutations, and a low frequency of random substitution estimated to occur at approx. 1 in 4000 nt was detected. This method represents a significant improvement over standard methods of site-directed mutagenesis because it is much faster, simpler and approaches 100% efficiency in the generation of mutant product.  相似文献   

8.
利用DREAM设计和同源重组进行一步定点突变   总被引:3,自引:1,他引:2  
目的:建立基于DREAM设计和同源重组的简便、快速定点突变方法。方法:设计两条包含突变的反向PCR(inverse PCR)引物,使其5'端互补从而产生同源重组,同时使用DREAM设计方案在上述引物中引入限制性内切酶位点以便突变子筛选。用能扩增长片段的高保真耐热 DNA聚合酶扩增全长的质粒DNA,直接转化大肠杆菌。转化到细菌中的全长质粒DNA PCR产物可利用其末端同源序列发生同源重组而环化。利用引入的酶切位点方便地进行突变子的筛选。结果:我们用该方法成功地对长度大于7 kb的质粒进行了定点突变。结论:本定点突变无需任何突变试剂盒和特殊的试剂,只需一步反应即可完成;利用DREAM设计使克隆筛选简便可靠,高保真耐热DNA聚合酶可保证多数突变子克隆不发生意外突变,而该酶扩增长片段的能力使该方法适合于大多数质粒不经亚克隆直接突变。  相似文献   

9.
The effects of photocaged nucleosides on the DNA polymerization reaction was investigated, finding that most polymerases are unable to recognize and read through the presence of a single caging group on the DNA template. Based on this discovery, a new method of introducing mutations into plasmid DNA via a light-mediated mutagenesis protocol was developed. This methodology is advantageous over several common approaches in that it requires the use of only two polymerase chain reaction primers, and does not require any restriction sites or use of restriction enzymes. Additionally, this approach enables not only site-directed mutations, but also the insertion of DNA strands of any length into plasmids and the deletion of entire genes from plasmids.  相似文献   

10.
目的:改进传统重叠延伸PCR方法,实现引入3个不同DNA突变位点的简便的多位点定点突变。方法:根据前期构建的包含人线粒体12S rRNA(NC 01290)3个热点突变位点的野生型质粒序列,利用Muta Primer 2.0软件设计针对3个热点突变位点的3对互补的定点突变引物,以野生型质粒为模板,结合重叠延伸PCR反应和冷冻析出法,产生同时包含3个突变位点的突变目的片段,酶切后克隆到载体中,测序确证是否突变成功。结果:DNA测序证实3个不同突变位点同时成功引入,定点突变载体构建成功。结论:用改进的重叠延伸PCR技术能简便、高效地获得多位点定点突变载体,在分子生物学领域有较高的使用价值。  相似文献   

11.
Three-step PCR mutagenesis for 'linker scanning'.   总被引:2,自引:0,他引:2       下载免费PDF全文
'Linker scanning' has been used as an efficient method for systematically surveying a segment of DNA for functional elements by mutagenesis. A three-step PCR method was developed to simplify this process. In this method, a set of 'mutation primers' was made with 6 to 8 base substitutions in the center of the primers. In the first PCR reaction, these 'mutation primers' are paired with an 3' primer from the opposite end of the analyzed sequences to form a 'ladder' of fragments containing the base pair substitutions. These are used as templates in the second PCR with the 3' primer as the only primer to generate single stranded sequences, which are used as primers in the third PCR paired with an 5' primer to complete the mutagenesis. We have tested the method in a mutation screen of the steroid sulfatase promoter. Its application to general site specific mutagenesis is discussed.  相似文献   

12.
The QuikChangeTM site-directed mutagenesis method is popular but imperfect. An improvement by using partially overlapping primers has been reported several times; however, it is incompatible with the proposed mechanism. The QuikChangeTM method using complementary primers is proposed to linearly amplify a target plasmid with the products annealing to produce double-stranded DNA molecules with 5′-overhangs. The overhang annealing is supposed to form circular plasmids with staggered breaks, which can be repaired in Escherichia coli after transformation. Here, we demonstrated that the PCR enzyme fills the 5′-overhangs in the early cycles, and the product is then used as the template for exponential amplification. The linear DNA molecules with homologous ends are joined to generate the plasmid with the desired mutations through homologous recombination in E. coli. The correct understanding is important to method improvements, guiding us to use partially overlapping primers and Phusion DNA polymerase for site-directed mutagenesis. Phusion did not amplify a plasmid with complementary primers but used partially overlapping primers to amplify the plasmid, producing linear DNA molecules with homologous ends for site-directed mutagenesis.  相似文献   

13.
目的:介绍一种简便、有效的定点突变技术。方法:根据突变位点附近的DNA序列推导出氨基酸序列,再以此氨基酸序列进行逆翻译,这样在不改变氨基酸序列的前提下可以得到数目巨大的隐性突变体(silent mutants),这些突变体中包含大量的限制性内切酶位点,选择合适的酶切位点设计引物用PCR技术扩增两侧DNA片段,然后以相应酶切融合这两个片段即可完成定点突变。结果:用该方法成功地在人工合成的含有缺失的可溶性组织因子基因的472位插入C,T两个碱基,校正了阅读框架,获得了预期的目的基因。结论:该方法简便、有效, 避免了多轮PCR和合成长引物导致突变的可能性,这种改进的PCR 定点诱变技术我们称之为“设计限制酶辅助突变”(Designed Restriction Enzyme Assisted Mutagenesis, DREAM)。此技术简单方便, 诱变的成功率高, 适于实验室常规应用。  相似文献   

14.
Methods for introducing multiple site-directed mutations are important experimental tools in molecular biology. Research areas that use these methods include the investigation of various protein modifications in cellular processes, modifying proteins for efficient recombinant expression, and the stabilization of mRNAs to allow for increased protein expression. Introducing multiple site-directed mutations is also an important tool in the field of synthetic biology. There are two main methods used in the assembling of fragments generated by mutagenic primers: enzymatic assembly and overlap extension polymerase chain reaction (OE–PCR). In this article, we present an improved OE–PCR method that can be used for the generation of large DNA fragments (up to 7.4 kb) where at least 13 changes can be introduced using a genomic template. The improved method is faster (due to fewer reaction steps) and more accurate (due to fewer PCR cycles), meaning that it can effectively compete with the enzymatic assembly method. Data presented here show that the site-directed mutations can be introduced anywhere between 50 and 1800 bp from each other. The method is highly reliable and predicted to be applicable to most DNA engineering when the introduction of multiple changes in a DNA sequence is required.  相似文献   

15.
A marker-coupled method for site-directed mutagenesis   总被引:1,自引:0,他引:1  
T J Shen  L Q Zhu  X Sun 《Gene》1991,103(1):73-77
A marker-coupled method for site-directed mutagenesis (SDM) has been developed. In this method, target DNA is first cloned into a plasmid vector which carries an inactivated tetracycline-resistance (TcR)-encoding tet gene. Using this cloned plasmid as template, polymerase chain reaction (PCR) is performed with a mutagenic primer and a marker primer. The mutagenic primer contains the desired mutations to be introduced into the target DNA, and the marker primer contains a mutation for restoring the activity of the inactivated tet gene. The PCR product is annealed with a gapped duplex plasmid template, extended and ligated in vitro. The resulting uni-strand-mutated plasmid is converted into the gapped duplex form, transformed into Escherichia coli JM109 and spread on yeast extract/tryptone culture medium + Tc plates. The TcR colonies grown on these plates all carry active tet genes. Due to the 'tight coupling' between the marker primer and the mutagenic primer formed in the PCR product, these TcR colonies should also carry the mutagenic primer, e.g., the desired mutations in the target DNA. In fact, practically all of the TcR colonies have been found to be the desired mutants in the present experiments. Therefore, this method provides a very efficient approach for SDM.  相似文献   

16.
Wu W  Jia Z  Liu P  Xie Z  Wei Q 《Nucleic acids research》2005,33(13):e110
We have developed a novel three-primer, one-step PCR-based method for site-directed mutagenesis. This method takes advantage of the fact that template plasmid DNA cannot be efficiently denatured at its reannealing temperature (Tra), which is otherwise a troublesome problem in regular PCR. Two flanking primers and one mutagenic primer with different melting temperatures (Tm) are used together in a single PCR tube continuously without any intervention. A single-stranded mutagenic DNA (smDNA) is synthesized utilizing the high Tm mutagenic primer at a high annealing temperature, which prevents the priming of the low Tm primers (i.e. the two flanking primers). A megaprimer is then produced using this smDNA as the template at a denaturing temperature that prevents wild-type template DNA activity. The desired mutant DNA is then obtained by cycling again through these first two steps, resulting in a mutagenic efficiency of 100% in all tested cases. This highly automated method not only eliminates the necessity of any intermediate manipulation and accomplishes the mutagenesis process in a single round of PCR but, most notably, enables complete success of mutagenesis. This novel method is also both cost and time efficient and fully automated.  相似文献   

17.
We have developed a new primer design method based on the QuickChange™ site-directed mutagenesis protocol, which significantly improves the PCR amplification efficiency. This design method minimizes primer dimerization and ensures the priority of primer-template annealing over primer self-pairing during the PCR. Several different multiple mutations (up to 7 bases) were successfully performed with this partial overlapping primer design in a variety of vectors ranging from 4 to 12 kb in length. In comparison, all attempts failed when using complete-overlapping primer pairs as recommended in the standard QuickChange™ protocol. Our protocol was further extended to site-saturation mutagenesis by introducing randomized codons. Our data indicated no specific sequence selection during library construction, with the randomized positions resulting in average occurrence of each base in each position. This method should be useful to facilitate the preparation of high-quality site saturation libraries.  相似文献   

18.
Krauss U  Eggert T 《BioTechniques》2005,39(5):679-682
Several primer prediction programs have been developed for a variety of applications. However none of these tools allows the prediction of a large set of primers for whole gene site-directed mutagenesis experiments using the megaprimer method. We report a novel primer prediction tool (insilico.mutagenesis), accessible at www.insilico.uni-duesseldorf.de, developed for the application to high-throughput mutagenesis used in directed evolution or structure-function dependency projects, which involve the subsequent mutagenesis of a large number of amino acid positions (e.g., in whole gene saturation or gene scanning mutagenesis experiments). Furthermore, the program is suitable for all site-directed (saturation) mutagenesis approaches, such as saturation mutagenesis of promoter sequences and other types of untranslated intergenic regions. In anticipation of downstream cloning steps, the primer design tool also includes a restriction site control feature alerting the user if unwanted restriction sites have been introduced within the mutagenesis primer. The use of our tool promises to speed up the process of site-directed mutagenesis, as it instantly allows predicting a large set of primers.  相似文献   

19.
Site-directed mutagenesis is widely used to study protein and nucleic acid structure and function. Despite recent advancements in the efficiency of procedures for site-directed mutagenesis, the fraction of site-directed mutants by most procedures rarely exceeds 50% on a routine basis and is never 100%. Hence it is typically necessary to sequence two or three clones each time a site-directed mutant is constructed. We describe a simple and robust gradient-PCR-based screen for distinguishing site-directed mutants from the starting, unmutated plasmid. The procedure can use either purified plasmid DNA or colony PCR, starting from a single colony. The screen utilizes the primer used for mutagenesis and a common outside primer that can be used for all other mutants constructed with the same template. Over 30 site-specific mutants in a variety of templates were successfully screened and all of the mutations detected were subsequently confirmed by DNA sequencing. A single base pair mismatch could be detected in an oligonucleotide of 36 bases. Detection efficiency was relatively independent of starting template concentration and the nature of the outside primer used.  相似文献   

20.
Optimization strategies for the polymerase chain reaction   总被引:8,自引:0,他引:8  
The GeneAmp polymerase chain reaction (PCR) process has now become a key procedure in molecular biology research laboratories. The PCR technique is an in vitro method in which genomic or cloned target sequences are specifically enzymatically amplified as directed by a pair of oligonucleotide primers. This technique has been quite robust in the hands of the majority of researchers and is extremely flexible, as evidenced by the increasing number of related PCR formats (i.e., inverse PCR, anchored PCR, asymmetric PCR, labeled primer PCR and RNA-PCR). Today's applications include direct sequencing, genomic cloning, DNA typing, detection of infectious microorganisms, site-directed mutagenesis, prenatal genetic disease research, and analysis of allelic sequence variations. Scientists at Cetus and Perkin-Elmer have collaborated for several years to better understand the interacting biochemical and biophysical parameters which affect PCR optimization. Following are many of the current recommendations, offered with the caveat that our understanding of the PCR process is continually evolving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号