首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium di(2-ethylhexyl) sulfosuccinate, referred to as Aerosol-OT or AOT, was used to remove lysozyme from an aqueous phase via reverse micellar extraction and precipitation method. For both methods, when the surfactant was in excess, a complete removal of lysozyme from the aqueous phase was obtained at the values of pH below the pI of lysozyme. However, for the reverse micellar method, a solubilization limit of lysozyme in the organic phase was observed, and a white precipitate was formed at the aqueous-organic interface. This observation suggested using AOT directly as a precipitating ligand. The lysozyme precipitated with AOT was fully recovered, with its original enzymatic activity, using acetone as a recovery solvent. A mechanism is suggested to explain the solubilization of lysozyme in an AOT reverse micellar system. It is shown that a direct precipitation method can be used with advantage instead of using the reverse micellar extraction method to recover lysozyme from an aqueous phase.  相似文献   

2.
Protein extractions using aerosol OT (AOT)-isooctane reverse micelle solutions have been studied to explore the potential for separating and enriching proteins with the reversed micellar extraction. The effects of pH, ionic strength, and different cations of chlorides in a bulk aqueous phase and of AOT concentration in an organic phase on the partitioning of lysozyme and myoglobin and the solubilization of water are presented in detail. The extraction of lysozyme was affected by the concentration of potassium or barium but was almost independent of that of sodium or calcium, whose ionic diameter is smaller than that of potassium and barium. For the extraction of myoglobin, however, the effect of barium concentration was not appreciable. Lysozyme could be enriched into the reversed micellar phase up to 30 times the aqueous feed concentration. (c) 1993 John Wiley & Sons, Inc.  相似文献   

3.
The efficacy of guanidium salts in the recovery of extracted lysozyme from aerosol-OT (AOT) reverse micellar organic phase was investigated. Adding guanidium salt at a low concentration as pretreatment reagent in the feed solution led to successful protein recovery, and the enzymatic activity of the recovered lysozyme was well maintained. Among the electrolytes tested, caotropic guanidine thiocyanate (GuHSCN) was the most effective in recovering lysozyme as well as in preserving its activity. The presence of guanidium salt in the micellar organic phase markedly lowered the water content, apparently by reducing or eliminating accompanying water arising from lysozyme solubilization. CD data showed that the α-helix content of the lysozyme in the micellar phase in the presence of dilute guanidium salt was smaller than that in a guanidium-free micellar phase. These results indicated that the guanidium salt expelled lysozyme molecules from the micro-interface of the reverse micelles into the hydrophilic micro-water pool.  相似文献   

4.
The reverse micellar system of sodium bis(2-ethylhexyl) phosphate (NaDEHP)/isooctane/brine was used for liquid-liquid extraction of proteins. We investigated the solubilization of cytochrome-c and alpha-chymotrypsin into the NaDEHP reverse micellar phase by varying the pH and NaCl concentration in the aqueous phase. At neutral pH and relatively low ionic strength, the proteins are extracted into the micellar phase with high yield. By contacting the micellar phase with a divalent cation (e.g., Ca(2+)) aqueous solution, the reverse micelles are destabilized and release the protein molecules back into an aqueous solution for recovery. This method separates the proteins from the surfactant with very high overall efficiencies. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
The concentrations of dioctyldimethyl ammonium chloride (DODMAC) and 1-decanol in isooctane needed to form reverse micelles by phase contact have been determined. The behavior of these reverse micelles in the extraction of aspartic acid, glutamic acid, and threonine was studied by analyzing all of the ionic species in the aqueous phase. The amino acid is extracted from the aqueous phase by exchanging with the Cl(-) counterions of DODMAC in the reverse micelles. The ionic species in the reverse micelles tend toward their undissociated states as the water uptake by the reverse micelles decreases. The effect of 1-decanol on the extraction of the amino acids with two negative charges is due to the change in the water uptake of the reverse micelles. The concentration of DODMAC has no effect on the ion exchange of the amino acid with one negative charge with the Cl(-) counterions of DODMAC in the reverse micelles. Higher molar ratios of decanol to DODMAC favor the selective separation of amino acids with different charge numbers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
Experiments are reported here on the equilibrium partitioning of lysozyme and ribonuclease-a between aqueous and reversed micellar phases comprised of an anionic surfactant, sodium di-2-ethylhexyl sulfosuccinate (AOT), in isooctane. A distinct maximum, [P](rm,max) was found for the quantity of a given protein that can be solubilized in the reverse micelle phase by the phase-transfer method. This upper limit depended upon the size of the protein, the surfactant concentration, and the aqueous phase ionic strength, and was determined by complex formation between protein and surfactant molecules to form an insoluble interfacial precipitate at high values of [P](rm). In this work, it was found to be possible to dissociate the protein-surfactant complex and recover the precipitated protein. The kinetics of protein-surfactant complex formation depended upon the nature and concentration of the solubilized protein and on the surfactant concentration. Calculations of micellar occupancy and the relative surface areas of protein molecules and surfactant head-groups suggested that it was the exposure of the solubilized protein to the bulk organic solvent which promoted protein-surfactant complex formation as [P](rm) --> [P](rm,max). In the light of the experimental results and calculations described above, a mechanistic model is proposed to account for the observed phenomena. This is based upon the competing effects of increasing the solubilized protein concentration and the corresponding increase in the rate of protein-surfactant complex formation. The dynamic nature of the reverse micelles is inherent in the model, explaining the formation of the interfacial precipitate with time and its dependence on the internal phase volume of the micellar phase. Experiments on the co-partitioning of water and measurement ofthe AOT concentration in both phases verified the loss of protein, water, and surfactant from the organic phase at high values of [P](rm). (c) 1995 John Wiley & Sons Inc.  相似文献   

7.
The extraction of flexibly-structured protein in Aerosol-OT (AOT)/isooctane reverse micelles was investigated. A flexibly-structured lysozyme was prepared by reduction and carboxymethylation of the disulfide bonds in the lysozyme molecule. For a comparison, lysozymes whose surface hydrophobicity was modified by monoacylation of the amino groups were also used. The extraction rate of the flexibly-structured lysozyme into the micellar phase was greater than that of the native and monoacylated lysozymes, although the free energy change of the lysozyme prepared by breaking the disulfide bonds was smaller than that of the lysozymes whose surfaces were monoacylated. Viscosity measurement of the micellar organic phase containing the modified lysozymes indicated that extraction of the flexibly-structured lysozyme changed the micelle–micelle interaction, while measurement of the interfacial tension between the AOT/isooctane and protein aqueous systems showed the flexibly-structured lysozyme to be the most amphiphilic in character. These results indicated that the flexible structure of a protein was more dominant than its surface hydrophobicity for its incorporation into reverse micelles, and that it leads to greater micelle–micelle interaction.  相似文献   

8.
In order to use reverse micellar solutions successfully for the separation of proteins, good methods are needed to recover the biomolecules into an aqueous environment after solubilization into organic micellar media. Usually the recovery is accomplished by equilibrating the protein-loaded reverse micellar solution with a water phase containing an appropriate salt (back-transfer). In this article we describe an alternative "back extraction" procedure which is based on the addition of silica to the protein-containing reverse micellar solution. In this way, the water is stripped from the reverse micellar solution. [i.e., bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane/water] and the proteins adsorb to the silica particles. The adsorption process is shown to be practically quantitative. The subsequent recovery of the proteins form the silica into an aqueous solution turns out to be most efficient at alkaline pH (pH 8); 60-80 of the total protein (alpha-chymotrypsin or trypsin) could be recovered. The specific enzyme activity at the end of the whole cycle can be as high as 80-100%. The procedure is applied also for the back extraction from micellar solutions in which, instead of AOT, a biocompatible surfactant such as a synthetic short-chain lecithin was used. It is shown that the recovery of a alpha-chymotrypsin and trypsin is also achievable under these conditions in quite good yield and under good maintenance of the enzyme's catalytic activity. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
Li JL  Bai R 《Biodegradation》2005,16(1):57-65
Biodegradation of poorly soluble polycyclic aromatic hydrocarbons (PAHs) has been a challenge in bioremediation. In recent years, surfactant-enhanced bioremediation of PAH contaminants has attracted great attention in research. In this study, biodegradation of phenanthrene as a model PAHs solubilized in saline micellar solutions of a biodegradable commercial alcohol ethoxylate nonionic surfactant was investigated. The critical micelle concentration (CMC) of the surfactant and its solubilization capacity for phenanthrene were examined in an artificial saline water medium, and a type of marine bacteria, Neptunomonas naphthovorans, was studied for the biodegradation of phenanthrene solubilized in the surfactant micellar solutions of the saline medium. It is found that the solubility of phenanthrene in the surfactant micellar solutions increased linearly with the surfactant concentrations, but, at a fixed phenanthrene concentration, the biodegradability of phenanthrene in the micellar solutions decreased with the increase of the surfactant concentrations. This was attributed to the reduced bioavailability of phenanthrene, due to its increased solubilization extent in the micellar phase and possibly lowered mass transfer rate from the micellar phase into the aqueous phase or into the bacterial cells. In addition, an inhibitory effect of the surfactant on the bacterial growth at high surfactant concentrations may also play a role. It is concluded that the surfactant largely enhanced the solubilization of phenanthrene in the saline water medium, but excess existence of the surfactant in the medium should be minimized or avoided for the biodegradation of phenanthrene by Neptunomonas naphthovorans.  相似文献   

10.
Phase transfer studies were conducted to evaluate the solubilization of soy hull peroxidase (SHP) in reverse micelles formed in isooctane/butanol/hexanol using the cationic surfactant cetyltrimethylammonium bromide (CTAB). The effect of various parameters such as pH, ionic strength, surfactant concentration of the initial aqueous phase for forward extraction and buffer pH, type and concentration of salt, concentration of isopropyl alcohol and volume ratio for back extraction was studied to improve the efficiency of reverse micellar extraction. The active SHP was recovered after a complete cycle of forward and back extraction. A forward extraction efficiency of 100%, back extraction efficiency of 36%, overall activity recovery of 90% and purification fold of 4.72 were obtained under optimised conditions. Anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) did not yield good results under the conditions studied. The phase transfer of soy hull peroxidase was found to be controlled by electrostatic and hydrophobic interactions during forward and back extraction respectively.  相似文献   

11.
An affinity-based reverse micellar system formulated with nonionic surfactant was applied to the refolding of denatured-reduced lysozyme. The nonionic surfactant of sorbitan trioleate (Span 85) was modified with Cibacron Blue F-3GA (CB) as an affinity surfactant (CB-Span 85) to form affinity-based reverse micelles in n-hexane. The water content of 15 was found optimal for lysozyme refolding in the reverse micellar system of 62.7 mmol/L Span 85 with coupled CB of 0.3 and 0.5 mmol/L. In addition, the operating conditions such as pH and the concentrations of urea and redox reagents were optimized. Under the optimized conditions, complete renaturation of lysozyme at 3-3.5 mg/mL was achieved, whereas dilution refolding in the bulk aqueous phase under the same conditions gave much lower activity recovery. Moreover, the secondary structure of the refolded lysozyme was found to be the same as the native lysozyme. Over 95% of the refolded lysozyme was recovered from CB-Span 85 reverse micelles by a stripping solution of 0.5 mol/L MgCl(2). Thus, the present system is advantageous over the conventional reverse micellar system formed with ionic surfactants in the ease of protein recovery.  相似文献   

12.
The efficiency of guanidine hydrochloride (GuHCl) addition in the suppression of gel formation and the extraction of lysozyme during reverse micellar extraction from chicken egg white was investigated. A low concentration of GuHCl in the feed permitted the successful extraction of lysozyme in its native form without gel formation, which is perceived as a novel function of GuHCl. The highest recovery and specific activity of lysozyme were obtained at a GuHCl concentration of 0.06 M in 25 mM AOT reverse micellar extraction from 20-fold-diluted natural chicken egg white. Lysozyme and ovalbumin CD spectra in the corresponding GuHCl aqueous solutions revealed no changes in the higher order structures of the proteins. Furthermore, the specific activity of lysozyme in the feed was well preserved in the GuHCl system. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
Chymotrypsin is easily extracted from an aqueous solution into isooctane containing the anionic surfactant aerosol OT (AOT). The concentration of AOT needed to efficiently extract 0.5 mg/mL CMT is as low as 1 mM and as low as 0.2 mM AOT was sufficient to extract the protein into isooctane. The extraction process was unaffected by 10% (v/v) ethyl acetate in the isooctane phase. Moreover, spectroscopic analysis by electron paramagnetic resonance indicated that CMT did not exist inside a discreet water pool of a reversed micelle. Calculations of the number of AOT molecules associated per extracted CMT molecule indicate that only ca. 30 surfactant molecules interact with the protein, a value too low for reversed micellar incorporation of the protein in isooctane. These studies suggested that reversed micelles do not need to be involved in the actual transfer of the protein from the aqueous to the organic phase and protein solubilization in the organic phase is possible in the absence of reversed micelles. Based on these findings, a new mechanism has been proposed herein for protein extraction via the phase transfer method involving ionic surfactants. The central theme of this mechanism is the formation of an electrostatic complex between CMT and AOT at the aqueous/organic interface between AOT and CMT, thereby leading to the formation of a hydrophobic species that partitions into the organic phase. Consistent with this mechanism, the efficiency of extraction is dependent on the interfacial mass transfer, the concentrations of CMT and AOT in the aqueous and organic phases, respectively; the ionic strength of the aqueous phase; and the presence of various cosolvents. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
The liquid-liquid extraction of alpha-lactalbumin based on reverse micellar organic solvents was investigated. Forward extraction of the protein in the reverse micellar organic phase from aqueous feed solutions was strongly dependent on the initial pH of the feed solution and the complete forward extraction of 0.03 mM alpha-lactalbumin was successfully achieved at pH 6.0. The forward extraction percentage steeply decreased with increasing KCl concentration, while in the NaCl system the forward extraction was independent on the salt concentration below 1 M. From the circular dichroic measurement, higher order structure of the recovered alpha-lactalbumin through the extraction process was well preserved.  相似文献   

15.
Refolding of denatured RNase A as a model of inclusion bodies was performed by reversed micelles formulated with sodium di-2-ethylhexyl sulfosuccinate (AOT) in isooctane. In the novel refolding process, a solid-liquid extraction was utilized as an alternative to the ordinary protein extraction by reversed micelles based on a liquid-liquid extraction. First, the effects of operational parameters such as concentration of AOT, W(o) (= [H(2)O]/[AOT]), and pH were examined on the solubilization of solid denatured proteins into a reversed micellar solution. The solubilization was facilitated by a high AOT concentration, a high W(o) value, and a high pH in water pools. These conditions are favorable for the dispersion of the solid protein aggregates in an organic solvent. Second, the renaturation of the denatured RNase A solubilized into the reversed micellar solution was conducted by addition of glutathione as a redox reagent. A complete renaturation of RNase A was accomplished by adjusting the composition of the redox reagent even at a high protein concentration in which protein aggregation would usually occur in aqueous media. In addition, the renaturation rates were improved by optimizing water content (W(o)) and the pH of water pools in reversed micelles. Finally, the recovery of renatured RNase A from the reversed micellar solution was performed by adding a polar organic solvent such as acetone into the reversed micellar solution. This precipitation method was effective for recovering proteins from reversed micellar media without any significant reduction in enzymatic activity.  相似文献   

16.
In this work, the forward and back extraction of soybean protein by reverse micelles was studied. The reverse micellar systems were formed by anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT), isooctane and KCl solution. The effects of AOT concentration, aqueous pH, KCl concentration and phase volume ratio on the extraction efficiency of soybean protein were tested. Suitability of reverse micelles of AOT and Triton-X-100/AOT mixture in organic solvent toluene for soybean protein extraction was also investigated. The experimental results lead to complete forward extraction at the AOT concentration 120 mmol l−1, aqueous pH 5.5 and KCl concentration 0.8 mol l−1. The backward extraction with aqueous phase (pH 5.5) resulted in 100% extraction of soybean protein from the organic phase.  相似文献   

17.
Protein extraction and activity in reverse micelles of a nonionic detergent   总被引:2,自引:0,他引:2  
We describe, for the first time, the ability of a polyoxyethylene sorbitan trioleate-isopropanol microemulsion in hexane to solubilize pure proteins. The dependences of cytochrome c extraction and buffer solubilization by the reverse micellar system on ionic strength of the aqueous phase, detergent concentration, and cosurfactant concentration result in increased extraction. In addition, subtilisin (a serine protease) is shown to be active in this microemulsion. Further the activity of the enzyme can be regulated by the water content of the micelles, enabling control of enzyme activity by "solvent engineering."  相似文献   

18.
The mass transfer characterization in reversed micellar extraction of amino acid phenylalanine (Phe) is presented. The mass transfer rates in forward extraction of Phe from aqueous KCl solutions (pH 1.4  2.3) to AOT/isooctane reversed micellar solutions and in backward extraction from the reversed micellar organic phase to KHCO3/KOH buffer solutions (pH 9.0  11.0) were investigated using a stirred cell with a flat liquid–liquid interface. Both the forward and the backward extraction rates are controlled by the interfacial rate processes, i.e., the solubilization and the release processes. The solubilizing rate constants for the forward extraction of Phe increase with decreasing pH and initial Phe concentration and with increasing initial AOT concentration. On the other hand, the releasing rate constants for the backward extraction decrease with increasing initial AOT concentration and with decreasing ionic strength, but are little influenced by pH. The backward extraction rates are fairly slow compared to the forward extraction rates, and are accelerated by the addition of 2-methyl-2-propanol, similar to the extraction of protein lysozyme.  相似文献   

19.
Mechanisms of protein solubilization in reverse micelles   总被引:4,自引:0,他引:4  
Solubilization properties of alpha-chymotrypsin and alcohol dehydrogenase (LADH) in reverse micelles are reported for three different solubilization techniques. The solubilization properties for these two proteins depend on the method used for protein addition. The addition of a dry protein powder to a reverse-micelle-containing organic phase does not appreciably solubilize the protein until the diameter of the reverse micelle is similar to that of the protein. However, when an aqueous protein solution is injected an organic phase, protein solubilization is not strongly dependent on micelle size. For chymotrypsin, multiple protein occupancy occurs at large micelle size, with as many as 11 chymotrypsin molecules solubilized in one reverse micelle. The solubilization of chymotrypsin using a phase-transter technique with a positively charged surfactant follows the expected traned based on protein-surfactant electrostatic interactions. When a negatively charged sufactants is used for phase transfer, at low pH the solubilization data do not fit this electrostatic interaction mechanism. In this case, proteinsurfactant aggregation may be occurring at the aqueousorganic interface.  相似文献   

20.
The intermicellar aqueous phase in equilibrium with micelle plays an important role in the uptake of sterol. To test the hypothesis whether cholesterol concentration in the intermicellar aqueous phase of a micellar solution is similar to its maximal aqueous solubility, cholesterol concentration in the intermicellar aqueous phase of a bile salt-cholesterol solution and maximal aqueous cholesterol solubility were quantitatively determined by capillary gas-liquid chromatography after filtration. Cholesterol concentration in the intermicellar aqueous phase increased linearly with cholesterol concentration in the micellar solution and reached 1.3 microM at its micellar solubility limit, while the maximal aqueous solubility of cholesterol was (1.2-1.4) x 10(-8) M. The intermicellar monomer concentration of taurocholate was 5.8 mM in which 26 x 10(-8) M cholesterol was solubilized. The results indicate the presence of a cholesterol concentration in the intermicellar aqueous phase that is significantly higher than its maximal aqueous solubility, which can be ascribed primarily to the presence of an intermicellar concentration of bile salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号