首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Li N  Xu X  Xiao B  Zhu ED  Li BS  Liu Z  Tang B  Zou QM  Liang HP  Mao XH 《Molecular biology reports》2012,39(4):4655-4661
MicroRNAs have been implicated as a central regulator of the immune system. We have previously reported that Helicobacter pylori (H. pylori) was able to increase the expression of miR-146a, and miR-146a may negatively regulate H. pylori-induced inflammation, but the exact mechanism of how H. pylori contribute the induction of miR-146a is not clear. Here, we attempted to assess the role of H. pylori related proinflammatory cytokines including interleukin (IL)-8, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β, and cytotoxin-associated gene A (CagA) virulence factor on the induction of miR-146a. We found that IL-8, TNF-α, and IL-1β could contribute to the induction of miR-146a in gastric epithelial cell HGC-27 in NF-κB-dependent manner, while the induction of miR-146a upon H. pylori stimulation was independent of above proinflammatory cytokines. Furthermore, overexpression of miR-146a reduced H. pylori—induced IL-8, TNF-α, and IL-1β. However, CagA had no effect on the miR-146a induction. Taken together, our study suggest that proinflammatory cytokines IL-8, TNF-α, and IL-1β could contribute to the induction of miR-146a during H. pylori infection, while CagA is not necessarily required for miR-146a induction. miR-146a may function as novel negative regulators to modulate the inflammation.  相似文献   

2.
Cytokine expression due to Helicobacter pylori in a tissue culture model   总被引:2,自引:0,他引:2  
Helicobacter pylori, in recent years, has been recognized as the major causative agent in chronic gastritis and peptic ulcer disease in humans. H. pylori is a ubiquitous organism, with at least half of the world’s population infected. Of those individuals with peptic ulcer disease, it is estimated that 90% of cases are caused by H. pylori. Currently, the efficacy of therapies is starting to decline due to increasing resistance rates, especially towards clarithromycin. Due to this, new therapies are needed to combat this bacterium. It is hypothesized that cytokine release (especially interleukin-1β, -6, -8, and TNF-α) due to H. pylori infection and the subsequent influx of inflammatory cells causes a massive release of reactive oxygen species (ROS) during the inflammatory reaction. The ROS then cause the pathologic changes seen in the infected tissues. In this study, human gastric adenocarcinoma cell line ATCC 1739 (a cell line not previously evaluated) was examined for its production of interleukin-1β, -6, -8, and TNF-α when cocultured in a ratio of 10:1 H. pylori to adenocarcinoma cells, to determine its value as a model to demonstrate the inflammatory response. Results from this study indicated that ATCC 1739 cells only reliably produced IL-8 when cocultured with H. pylori and stimulated with TNF-α. The production of IL-1β, IL-6, and TNF-α by the ATCC 1739 cells was no different in H. pylori-exposed cells than non-exposed cells. It was concluded that the ATCC 1739 cell line is not suitable to study the effects of coculture with H. pylori on cytokine production.  相似文献   

3.
Dextran glucosidase from Streptococcus mutans (SMDG), an exo-type glucosidase of glycoside hydrolase (GH) family 13, specifically hydrolyzes an α-1,6-glucosidic linkage at the non-reducing ends of isomaltooligosaccharides and dextran. SMDG shows the highest sequence similarity to oligo-1,6-glucosidases (O16Gs) among GH family 13 enzymes, but these enzymes are obviously different in terms of substrate chain length specificity. SMDG efficiently hydrolyzes both short-and long-chain substrates, while O16G acts on only short-chain substrates. We focused on this difference in substrate specificity between SMDG and O16G, and elucidated the structure-function relationship of substrate chain length specificity in SMDG. Crystal structure analysis revealed that SMDG consists of three domains, A, B, and C, which are commonly found in other GH family 13 enzymes. The structural comparison between SMDG and O16G from Bacillus cereus indicated that Trp238, spanning subsites +1 and +2, and short βα loop 4, are characteristic of SMDG, and these structural elements are predicted to be important for high activity toward long-chain substrates. The substrate size preference of SMDG was kinetically analyzed using two mutants: (i) Trp238 was replaced by a smaller amino acid, alanine, asparagine or proline; and (ii) short βα loop 4 was exchanged with the corresponding loop of O16G. Mutant enzymes showed lower preference for long-chain substrates than wild-type enzyme, indicating that these structural elements are essential for the high activity toward long-chain substrates, as implied by structural analysis.  相似文献   

4.
The bkdAB gene cluster, which encodes plausible E1 and E2 components of the branched-chain α-keto acid dehydrogenase (BCDH) complex, was isolated from Streptomyces virginiae in the vicinity of a regulatory island for virginiamycin production. Gene disruption of bkdA completely abolished the production of virginiamycin M (a polyketide-peptide antibiotic), while the production of virginiamycin S (a cyclodepsipeptide antibiotic) was unaffected. Complementation of the bkdA disruptant by genome-integration of intact bkdA completely restored the virginiamycin M production, indicating that the bkdAB cluster is essential for virginiamycin M biosynthesis, plausibly via the provision of isobutyryl-CoA as a primer unit. In contrast to a feature usually seen in the Streptomyces E1 component, namely, the separate encoding of the α and β subunits, S. virginiae bkdA seemed to encode the fused form of the α and β subunits, which was verified by the actual catalytic activity of the fused protein in vitro using recombinant BkdA overexpressed in Escherichia coli. Supply of an additional bkdA gene under the strong and constitutive promoter ermE* in the wild-type strain of S. virginiae resulted in enhanced production of virginiamycin M, suggesting that the supply of isobutyryl-CoA is one of the rate-limiting factors in the biosynthesis of virginiamycin M.  相似文献   

5.
We recently described the design of Escherichia coli K12 and Salmonella enterica sv Typhimurium to display the gangliomannoside 3 (GM3) antigen on the cell surface [1]. We report here the fucosylation of modified lipooligosaccharide in a recombinant E.coli strain with a truncated lipid A core due to deletion of the core glycosyltransferases genes waaO and waaB. This truncated structure was used as a scaffold to assemble the Lewis Y motif by consequent action of the heterologously expressed β-1,4 galactosyltransferase LgtE (Neisseria gonorrheae), the β-1,3 N-acetylglucosaminyltransferase LgtA and the β-1,3 galactosyltransferase LgtB from Neisseria meningitidis, as well as the α-1,2 and α-1,3 fucosyltransferases FutC and FutA from Helicobacter pylori. We show the display of the Lewis Y structure by immunological and chemical analysis.  相似文献   

6.
Summary In this study, the variety of sugar residues in the gut glycoconjugates of Triturus carnifex (Amphibia, Caudata) are investigated by carbohydrate conventional histochemistry and lectin histochemistry. The oesophageal surface mucous cells contained acidic glycoconjugates, with residues of GalNAc, Gal β1,3 GalNAc and (GlcNAc β1,4) n oligomers. The gastric surface cells mainly produced neutral glycoproteins with residues of fucose, Gal β1-3 GalNAc, Gal-αGal, and (GlcNAc β1,4) n oligomers in N- and O-linked glycans, as the glandular mucous neck cells, with residues of mannose/glucose, GalNAc, Gal β1,3 GalNAc, (GlcNAc β1,4) n oligomers and fucose linked α1,6 or terminal α1,3 or α1,4 in O-linked glycans. The oxynticopeptic tubulo-vesicular system contained neutral glycoproteins with N- and O-linked glycans with residues of Gal-αGal, Gal β1-3 GalNAc and (GlcNAc β1,4) n oligomers; Fuc linked α1,2 to Gal, α1,3 to GlcNAc in (poly)lactosamine chains and α1,6 to GlcNAc in N-linked glycans. Most of these glycoproteins probably corresponds to the H+K+-ATPase β-subunit. The intestinal goblet cells contained acidic glycoconjugates, with residues of GalNAc, mannose/ glucose, (GlcNAc β1,4) n oligomers and fucose linked α1,2 to Gal in O-linked oligosaccharides. The different composition of the mucus in the digestive tracts may be correlated with its different functions. In fact the presence of abundant sulphation of glycoconjugates, mainly in the oesophagus and intestine, probably confers resistance to bacterial enzymatic degradation of the mucus barrier.  相似文献   

7.
SlyD belongs to the FK506-binding protein (FKBP) family with both peptidylprolyl isomerase (PPIase) and chaperone activities, and is considered to be a ubiquitous cytosolic protein-folding facilitator in bacteria. It possesses a histidine- and cysteine-rich C-terminus binding to selected divalent metal ions (e.g., Ni2+, Zn2+), which is important for its involvement in the maturation processes of metalloenzymes. We have determined the solution structure of C-terminus-truncated SlyD from Helicobacter pylori (HpSlyDΔC). HpSlyDΔC folds into two well-separated, orientation-independent domains: the PPIase-active FKBP domain and the chaperone-active insert-in-flap (IF) domain. The FKBP domain consists of a four-stranded antiparallel β-sheet with an α-helix on one side, whereas the IF domain folds into a four-stranded antiparallel β-sheet accompanied by a short α-helix. Intact H. pylori SlyD binds both Ni2+ and Zn2+, with dissociation constants of 2.74 and 3.79 μM respectively. Intriguingly, binding of Ni2+ instead of Zn2+ induces protein conformational changes around the active sites of the FKBP domain, implicating a regulatory role of nickel. The twin-arginine translocation (Tat) signal peptide from the small subunit of [NiFe] hydrogenase (HydA) binds the protein at the IF domain. Nickel binding and the recognition of the Tat signal peptide by the protein suggest that SlyD participates in [NiFe] hydrogenase maturation processes.  相似文献   

8.

Background  

Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. VacA, a toxin secreted by H. pylori, is comprised of two domains, designated p33 and p55. Analysis of the crystal structure of the p55 domain indicated that its structure is predominantly a right-handed parallel β-helix, which is a characteristic of autotransporter passenger domains. Substitution mutations of specific amino acids within the p33 domain abrogate VacA activity, but thus far, it has been difficult to identify small inactivating mutations within the p55 domain. Therefore, we hypothesized that large portions of the p55 domain might be non-essential for vacuolating toxin activity. To test this hypothesis, we introduced eight deletion mutations (each corresponding to a single coil within a β-helical segment spanning VacA amino acids 433-628) into the H. pylori chromosomal vacA gene.  相似文献   

9.
Seven analogues of p-nitrophenyl T-antigen [Galβ(1→3)GalNAcα(1→O)PNP] have been synthesized as potential substrates for elucidation of the substrate specificity of endo-α-N-acetylgalactosaminidase. These compounds, which are commercially unavailable, include: GlcNAcβ(1→3){GlcNAcβ(1→6)}GalNAcα(1→O)PNP [core 4 type], GalNAcα(1→3)GalNAcα(1→O)PNP [core 5 type], GlcNAcβ(1→6)GalNAcα(1→O)PNP [core 6 type], GalNAcα(1→6)GalNAcα(1→O)PNP [core 7 type], Galα(1→3)GalNAcα(1→O)PNP [core 8 type], Glcβ(1→3)GalNAcα(1→O)PNP and GalNAcβ(1→3)GalNAcα(1→O)PNP. The assembly of these synthetic probes was accomplished efficiently, based on di-tert-butylsilylene(DTBS)-directed α-galactosylation as a key reaction.  相似文献   

10.
The chloroplast ATP synthase (ATPase) utilizes the energy of a transmembrane electrochemical proton gradient to drive the synthesis of ATP from ADP and phosphate. The chloroplast ATPase α and β subunits are the essential components of multisubunit protein complex. In this paper, the full-length cDNA and genomic DNA of ATPase α (designated as GbatpA) and β (designated as GbatpB) subunit genes were isolated from Ginkgo biloba. The GbatpA and GbatpB genes were both intronless. The coding regions of GbatpA and GbatpB were 1530 bp and 1497 bp long, respectively, and their deduced amino acid sequences showed high degrees of identity to those of other plant ATPase α and β proteins, respectively. The expression analysis by RT-PCR revealed that GbatpA and GbatpB both expressed in tissue-specific manners in G. biloba and might involve in leaf development. The recombinant GbATPB protein was successfully expressed in E. coli strain using pET28a vector with ATPase activity as three times high as the control, and the results showed that the molecular weight of the recombinant protein was about 54 kDa, a size that was in agreement with that predicted by bioinformatics analysis. This study provides useful information for further studying on overall structure, function and regulation of the chloroplast ATPase in G. biloba, the so-called “living fossil” plant as one of the oldest gymnosperm species. These authors contributed equally to this work  相似文献   

11.
The widely accepted model for toxicity mechanisms of the Bacillus thuringiensis Cry δ-endotoxins suggests that helices α4 and α5 form a helix-loop-helix hairpin structure to initiate membrane insertion and pore formation. In this report, alanine substitutions of two polar amino acids (Asn-166 and Tyr-170) and one charged residue (Glu-171) within the α4–α5 loop of the 130-kDa Cry4B mosquito-larvicidal protein were initially made via polymerase chain reaction-based directed mutagenesis. As with the wild-type toxin, all of the mutant proteins were highly expressed in Escherichia coli as inclusion bodies upon isopropyl-β-d-thiogalactopyranoside induction. When E. coli cells expressing each mutant toxin were assayed against Aedes aegypti mosquito larvae, the activity was almost completely abolished for N166A and Y170A mutations, whereas E171A showed only a small reduction in toxicity. Further analysis of these two critical residues by induction of specific mutations revealed that polarity at position 166 and highly conserved aromaticity at position 170 within the α4–α5 loop play a crucial role in the larvicidal activity of the Cry4B toxin.  相似文献   

12.
The amino acid sequences of 22 α-amylases from family 13 of glycosyl hydrolases were analyzed with the aim of revealing the evolutionary relationships between the archaeal α-amylases and their eubacterial and eukaryotic counterparts. Two evolutionary distance trees were constructed: (i) the first one based on the alignment of extracted best-conserved sequence regions (58 residues) comprising β2, β3, β4, β5, β7, and β8 strand segments of the catalytic (α/β)8-barrel and a short conserved stretch in domain B protruding out of the barrel in the β3 →α3 loop, and (ii) the second one based on the alignment of the substantial continuous part of the (α/β)8-barrel involving the entire domain B (consensus length: 386 residues). With regard to archaeal α-amylases, both trees compared brought, in fact, the same results; i.e., all family 13 α-amylases from domain Archaea were clustered with barley pI isozymes, which represent all plant α-amylases. The enzymes from Bacillus licheniformis and Escherichia coli, representing liquefying and cytoplasmic α-amylases, respectively, seem to be the further closest relatives to archaeal α-amylases. This evolutionary relatedness clearly reflects the discussed similarities in the amino acid sequences of these α-amylases, especially in the best-conserved sequence regions. Since the results for α-amylases belonging to all three domains (Eucarya, Eubacteria, Archaea) offered by both evolutionary trees are very similar, it is proposed that the investigated conserved sequence regions may indeed constitute the ``sequence fingerprints' of a given α-amylase. Received: 3 June 1998 / Accepted: 20 August 1998  相似文献   

13.
Helicobacter pylori adhere to Kato III and Hela S3 cells in monolayer cultures. To explore whether cell surface glycoconjugates on these two cell lines mediate binding of H. pylori, various carbohydrates, glycoproteins, and glycolipids were tested to inhibit H. pylori cell adhesion. The adhesion was measured (i) with a urease-based assay and (ii) by cells stained with fluorescein. Sodium periodate and sialidase treatment (but not α- or β-galactosidase, heparitinase, lysozyme, or trypsin) inhibited H. pylori binding to both cell lines. Sulfatides and sulfated glycoconjugates (50 μg/ml) but not heparin or a number of simple carbohydrates inhibited binding (1 mg/ml). The two H. pylori strains studied (CCUG 17874 and strain 25) showed high binding of soluble 125I-labeled heparin and other sulfated carbohydrate compounds. Received: 5 July 1996 / Accepted: 17 October 1996  相似文献   

14.
A novel fibrinolytic enzyme (AJ) was purified from Staphylococcus sp. strain AJ screened from Korean salt-fermented Anchovy-jeot. Relative molecular weight of AJ was determined as 26 kDa by using SDS-PAGE and fibrin zymography. Based on a 2D gel, AJ was found to consist of three active isoforms (pI 5.5–6.0) with the same N-terminal amino acid sequence. AJ exhibited optimum pH and temperature at 2.5–3.0 and 85°C, respectively. AJ kept 85% of the initial activity after heating at 100°C for 20 min on the zymogram gel. The Michaelis constant (K m) and K cat values of AJ towards α-casein were 0.38 mM and 19.73 s−1, respectively. AJ cleaved the Aα-chain of fibrinogen but did not affect the Bβ- and γ-chains, indicating that it is an α-fibrinogenase. The fibrinolytic activity was inhibited by diisopropyl fluorophosphate, indicating AJ is a serine protease. Interestingly, AJ was very stable at acidic condition, SDS, and heat (100°C), whereas it was easily degraded at neutral and alkaline conditions. In particular, AJ formed an active homo-dimer in the pH range from 7.0 to 8.0. To our knowledge, a similar combination of acid and heat stability has not yet been reported for other fibrinolytic enzymes.  相似文献   

15.
The recombinant β-carotene 15,15′-monooxygenase from chicken liver was purified as a single 60 kDa band by His-Trap HP and Resource Q chromatography. It had a molecular mass of 240 kDa by gel filtration indicating the native form to be tetramer. The enzyme converted β-carotene under maximal conditions (pH 8.0 and 37°C) with a k cat of 1.65 min−1 and a K m of 26 μM and its conversion yield of β-carotene to retinal was 120% (mol mol−1). The enzyme displayed catalytic efficiency and conversion yield for β-carotene, β-cryptoxanthin, β-apo-8′-carotenal, β-apo-4′-carotenal, α-carotene and γ-carotene in decreasing order but not for zeaxanthin, lutein, β-apo-12′-carotenal and lycopene, suggesting that the presence of one unsubstituted β-ionone ring in a substrate with a molecular weight greater than C30 seems to be essential for enzyme activity.  相似文献   

16.
The essential oils from the aerial parts of catmint (Nepeta meyeri Benth.) were analyzed by hydrodistillation with GC–MS. Fourteen compounds were identified in the yellowish essential oil of the plant, representing more than 99.07% of the oil, of which the major components were found to be 4aα,7α,7aβ-nepetalactone (83.4%) and 4aα,7α,7aα-nepetalactone (8.83%). The oils were characterized by relatively high content of oxygenated monoterpenes, and were tested on the germination and antioxidative systems in early seedlings of seven weed species (Amaranthus retroflexus L., Bromus danthoniae Trin., Bromus intermedius Guss., Chenopodium album L., Cynodon dactylon L., Lactuca serriola L., and Portulaca oleracea L.) and autotoxicity. The essential oil of N. meyeri inhibited seed germination by more than 50% in three weed species (B. danthoniae, B. intermedius, and L. serriola) when applied at a concentration of 0.01%. When the same oils were applied at 0.02% concentration, the inhibition of germination was more than 70% in two weeds (C. album and C. dactylon) and was 100% in four weeds (A. retroflexus, B. danthoniae, B. intermedius, and L. serriola). The essential oils increased CAT activity in all the weed species and decreased SOD activity, except in A. retroflexus. POX activity did not exhibit a revealing situation in the weed species tested. The essential oils increased the level of lipid peroxidation and hydrogen peroxide (H2O2) concentration in all the weeds studied. Our results show that the essential oils of N. meyeri have an important phytotoxic effect on seed germination and, consequently, seedling growth by exhausting antioxidative system of the weeds. The phytotoxic activity of the essential oils may be attributed to their relatively high content of oxygenated monoterpenes, especially 4aα,7α,7aβ-nepetalactone. It can be suggest that the essential oils of N. meyeri have the potential to be used as a bioherbicide.  相似文献   

17.
We investigated the relevance of the relationship between the compactness of β-galactosidase inclusion bodies (β-gal IBs) and their enhanced enzymatic activity with or without the addition of D-fucose (inducer analog) or methyl α-D-glucopyranoside (α-MG, catabolite repressor) after induction in the araBAD promoter system of Escherichia coli. Experiments conducted to evaluate the solubilization of β-gal IBs in guanidine hydrochloride as well as their trypsin degradation and temperature stability revealed that β-gal IBs expressed in response to the addition of D-fucose or α-MG had a looser structure. Additionally, β-gal IBs expressed when D-fucose or α-MG was added were more quickly solubilized in guanidine hydrochloride or degraded by trypsin-treatment than those produced when these compounds were not added. Moreover, the activity of β-gal IBs expressed when D-fucose or α-MG were added was less stable at various temperatures. Consequently, we deduced that the looser structure of β-gal IBs resulted in enhanced enzymatic activity of β-gal IBs upon addition of D-fucose or α-MG after induction.  相似文献   

18.
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 °C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 °C, with a t 50 of 45 min at 60 °C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl α-d-maltoside, methyl-α-d-glucopyranoside, pullulan, α- and β-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in α-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-α-d-glucan glucohydrolase).  相似文献   

19.
A new unique lectin (galactose-specific) purified from the seeds of Dolichos lablab, designated as DLL-II is a heterodimer composed of closely related subunits α and β. These were separated by SDS-PAGE and isolated by electroelution. By ESI-MS analysis their molecular masses were found to be 30.746 kDa (α) and 28.815 kDa (β) respectively. Both subunits were glycosylated and displayed similar amino acid composition. Using advanced mass spectrometry in combination with de novo sequencing and database searches for the peptides derived by enzymatic and chemical cleavage of these subunits, the primary sequence was deduced. This revealed DLL-II to be made of two polypeptide chains of 281(α) and 263(β) amino acids respectively. The β subunit differed from the α subunit by the absence of some amino acids at the carboxy terminal end. This structural difference suggests that possibly, the β subunit is derived from the α subunit by posttranslational proteolytic modification at the COOH-terminus. Comparison of the DLL-II sequence to other leguminous seed lectins indicates a high degree of structural conservation. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号