首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
选取13株国内2001~2004年分离的新城疫流行病毒(Newcastle disease virus,NDV),经蚀斑纯化,克隆其融合蛋白(F)和血凝素.神经氨酸酶(HN)基因,结合疫苗株La Sota、Clone30和国内标准强毒株F48E9等的基因序列,进行遗传变异分析.利用纯化的病毒制备特异阳性血清,进行鸡胚交叉中和试验,确定不同NDV毒株之间的抗原相关性,并与NDV不同毒株之间的HN和F基因核苷酸(氨基酸)同源性进行相关比较.结果表明:病毒中和指数与HN基因的核苷酸(氨基酸)同源性显著相关(P<0.01,r=-0.35),与F基因呈弱相关(P<0.05,r=0.20),而与F基因前374bp的核甘酸同源性不相关.这表明,NDV的分子变异已经对NDV的抗原性变异产生了影响,研制新型的疫苗成为必然.  相似文献   

3.
4.
5.
Virulent and moderately virulent strains of Newcastle disease virus (NDV), representing avian paramyxovirus serotype 1 (APMV-1), cause respiratory and neurological disease in chickens and other species of birds. In contrast, APMV-2 is avirulent in chickens. We investigated the role of the fusion (F) and hemagglutinin-neuraminidase (HN) envelope glycoproteins in these contrasting phenotypes by designing chimeric viruses in which the F and HN glycoproteins or their ectodomains were exchanged individually or together between the moderately virulent, neurotropic NDV strain Beaudette C (BC) and the avirulent APMV-2 strain Yucaipa. When we attempted to exchange the complete F and HN glycoproteins individually and together between the two viruses, the only construct that could be recovered was recombinant APMV-2 strain Yucaipa (rAPMV-2), containing the NDV F glycoprotein in place of its own. This substitution of NDV F into APMV-2 was sufficient to confer the neurotropic, neuroinvasive, and neurovirulent phenotypes, in spite of all being at reduced levels compared to what was seen for NDV-BC. When the ectodomains of F and HN were exchanged individually and together, two constructs could be recovered: NDV, containing both the F and HN ectodomains of APMV-2; and APMV-2, containing both ectodomains of NDV. This supported the idea that homologous cytoplasmic tails and matched F and HN ectodomains are important for virus replication. Analysis of these viruses for replication in vitro, syncytium formation, mean embryo death time, intracerebral pathogenicity index, and replication and tropism in 1-day-old chicks and 2-week-old chickens showed that the two contrasting phenotypes of NDV and APMV-2 could largely be transferred between the two backbones by transfer of homotypic F and HN ectodomains. Further analysis provided evidence that the homologous stalk domain of NDV HN is essential for virus replication, while the globular head domain of NDV HN could be replaced with that of APMV-2 with only a minimal attenuating effect. These results demonstrate that the F and HN ectodomains together determine the cell fusion, tropism, and virulence phenotypes of NDV and APMV-2 and that the regions of HN that are critical to replication and the species-specific phenotypes include the cytoplasmic tail and stalk domain but not the globular head domain.  相似文献   

6.
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays a crucial role in the process of infection. However, the exact contribution of the HN gene to NDV pathogenesis is not known. In this study, the role of the HN gene in NDV virulence was examined. By use of reverse genetics procedures, the HN genes of a virulent recombinant NDV strain, rBeaudette C (rBC), and an avirulent recombinant NDV strain, rLaSota, were exchanged. The hemadsorption and neuraminidase activities of the chimeric viruses showed significant differences from those of their parental strains, but heterotypic F and HN pairs were equally effective in fusion promotion. The tissue tropism of the viruses was shown to be dependent on the origin of the HN protein. The chimeric virus with the HN protein derived from the virulent virus exhibited a tissue predilection similar to that of the virulent virus, and vice versa. The chimeric viruses with reciprocal HN proteins either gained or lost virulence, as determined by a standard intracerebral pathogenicity index test of chickens and by the mean death time in chicken embryos (a measure devised to classify these viruses), indicating that virulence is a function of the amino acid differences in the HN protein. These results are consistent with the hypothesis that the virulence of NDV is multigenic and that the cleavability of F protein alone does not determine the virulence of a strain.  相似文献   

7.
Newcastle disease virus (NDV) belongs to serotype 1 of the avian paramyxoviruses (APMV-1) and causes severe disease in chickens. Current live attenuated NDV vaccines are not fully satisfactory. An alternative is to use a viral vector vaccine that infects chickens but does not cause disease. APMV serotype 3 infects a wide variety of avian species but does not cause any apparent disease in chickens. In this study, we constructed a reverse-genetics system for recovery of infectious APMV-3 strain Netherlands from cloned cDNAs. Two recombinant viruses, rAPMV3-F and rAPMV3-HN, were generated expressing the NDV fusion (F) and hemagglutinin-neuraminidase (HN) proteins, respectively, from added genes. These viruses were used to immunize 2-week-old chickens by the oculonasal route in order to evaluate the contribution of each protein to the induction of NDV-specific neutralizing antibodies and protective immunity. Each virus induced high titers of NDV-specific hemagglutination inhibition and serum neutralizing antibodies, but the response to F protein was greater. Protective immunity was evaluated by challenging the immunized birds 21 days later with virulent NDV via the oculonasal, intramuscular, or intravenous route. With oculonasal or intramuscular challenge, all three recombinant viruses (rAPMV3, rAPMV3-F, and rAPMV3-HN) were protective, while all unvaccinated birds succumbed to death. These results indicated that rAPMV3 alone can provide cross-protection against NDV challenge. However, with intravenous challenge, birds immunized with rAPMV3 were not protected, whereas birds immunized with rAPMV3-F alone or in combination with rAPMV3-HN were completely protected, and birds immunized with rAPMV3-HN alone were partially protected. These results indicate that the NDV F and HN proteins are independent neutralization and protective antigens, but the contribution by F is greater. rAMPV3 represents an avirulent vaccine vector that can be used against NDV and other poultry pathogens.  相似文献   

8.
Virulent strains of Newcastle disease virus (NDV) can cause devastating disease in chickens worldwide. Although the current vaccines are substantially effective, they do not completely prevent infection, virus shedding and disease. To produce genotype-matched vaccines, a full-genome reverse genetics system has been used to generate a recombinant virus in which the F protein cleavage site has been changed to that of avirulent vaccine virus. In the other strategy, the vaccines have been generated by replacing the F and HN genes of a commercial vaccine strain with those from a genotype-matched virus. However, the protective efficacy of a chimeric virus vaccine has not been directly compared with that of a full-genome virus vaccine developed by reverse genetics. Therefore, in this study, we evaluated the protective efficacy of genotype VII matched chimeric vaccines by generating three recombinant viruses based on avirulent LaSota (genotype II) strain in which the open reading frames (ORFs) encoding the F and HN proteins were replaced, individually or together, with those of the circulating and highly virulent Indonesian NDV strain Ban/010. The cleavage site of the Ban/010 F protein was mutated to the avirulent motif found in strain LaSota. In vitro growth characteristics and a pathogenicity test indicated that all three chimeric viruses retained the highly attenuated phenotype of the parental viruses. Immunization of chickens with chimeric and full-length genome VII vaccines followed by challenge with virulent Ban/010 or Texas GB (genotype II) virus demonstrated protection against clinical disease and death. However, only those chickens immunized with chimeric rLaSota expressing the F or F plus HN proteins of the Indonesian strain were efficiently protected against shedding of Ban/010 virus. Our findings showed that genotype-matched vaccines can provide protection to chickens by efficiently preventing spread of virus, primarily due to the F protein.  相似文献   

9.
10.
The complete nucleotide sequence of HN gene, the region of F gene, and intergene regions (M-F, F-HN, and HN-L) of the BOR74 and BOR82 strains of Newcastle disease virus have been determined. Based on the nucleotide and amino acid sequences, the speeds of the nucleic and amino acid changes were calculated (approximately 10(-3) nucleotides or amino acids/year). The BOR strains were grouped phylogenetically with the asymptomatic strains. These strains and the BOR strains have the same motif of the cleavage site (112GKQGR116-L117), but the HN protein of BOR strains has the 572 amino acids which differ the BOR strains from all other strains (571, 577, and 616 amino acids).  相似文献   

11.
Paramyxoviruses such as human parainfluenza viruses that bear inserts encoding protective antigens of heterologous viruses can induce an effective immunity against the heterologous viruses in experimental animals. However, vectors based on common human pathogens would be expected to be restricted in replication in the adult human population due to high seroprevalence, an effect that would reduce vector immunogenicity. To address this issue, we evaluated Newcastle disease virus (NDV), an avian paramyxovirus that is serotypically distinct from common human pathogens, as a vaccine vector. Two strains were evaluated: the attenuated vaccine strain LaSota (NDV-LS) that replicates mostly in the chicken respiratory tract and the Beaudette C (NDV-BC) strain of intermediate virulence that produces mild systemic infection in chickens. A recombinant version of each virus was modified by the insertion, between the P and M genes, of a gene cassette encoding the human parainfluenza virus type 3 (HPIV3) hemagglutinin-neuraminidase (HN) protein, a test antigen with considerable historic data. The recombinant viruses were administered to African green monkeys (NDV-BC and NDV-LS) and rhesus monkeys (NDV-BC only) by combined intranasal and intratracheal routes at a dose of 10(6.5) PFU per site, with a second equivalent dose administered 28 days later. Little or no virus shedding was detected in nose-throat swabs or tracheal lavages following immunization with either strain. In a separate experiment, direct examination of lung tissue confirmed a highly attenuated, restricted pattern of replication by parental NDV-BC. The serum antibody response to the foreign HN protein induced by the first immunization with either NDV vector was somewhat less than that observed following a wild-type HPIV3 infection; however, the titer following the second dose exceeded that observed with HPIV3 infection, even though HPIV3 replicates much more efficiently than NDV in these animals. NDV appears to be a promising vector for the development of vaccines for humans; one application would be in controlling localized outbreaks of emerging pathogens.  相似文献   

12.
利用反向遗传技术获得表达H5亚型禽流感病毒(AIV)血凝素(HA)的新城疫病毒(NDV)。克隆NDV clone 30的全长基因,通过在NDV的融合蛋白基因和血凝素-神经氨酸酶(HN)基因之间插入编码高致病性AIV分离株A/chicken/italy/8/98(H5N2)的血凝素基因开放阅读框从而获得两株重组新城疫病毒NDVH5和NDVH5m。NDVH5感染的细胞可以检测到两种HA转录产物。对于重组病毒NDVH5m,NDV位于HA ORF的转录终止信号序列被沉默突变消除,产生2.7个全长HA转录产物的折叠,从而使修饰过的HA得到稳定地高表达。1日龄小鸡的脑内接种证实了两种重组病毒均无致病性。鸡群在NDVH5m诱导产生的NDV和H5亚型AIV HA特异性抗体的免疫力下能够免于致死剂量的NDV与高致病性AIV的感染。血清学研究结果表明NDVH5m免疫鸡群产生的抗体可结合NP蛋白抗体的检测从而用于区分免疫和感染AIV的动物。因此,NDVH5m重组病毒可作为抗NDV和AIV的"二联疫苗",也可成为控制AJ的标记疫苗。  相似文献   

13.
Circulation of genotype VII Newcastle disease virus (NDV) has posed a great threat for the poultry industry worldwide. Antibodies against Hemagglutinin-neuraminidase (HN), a membrane protein of NDV with critical roles in NDV infection, have been reported to provide chickens protection from NDV infection. In this study, we comprehensively analyzed the in vivo antibody responses against the linear antigenic domains of the HN protein from genotype VII NDV using a yeast surface display system. The results revealed four distinct regions of HN, P1 (1-52aa), P2 (53-192aa), P3 (193-302aa) and P4 (303-571aa), respectively, according to their antigenic potency. Analysis by FACS and ELISA assay indicated P2 to be the dominant linear antigenic domain, with the immunogenic potency to protect the majority of chickens from NDV challenge. In contrast, the P1, P3 and P4 domains showed weak antigenicity in vivo and could not protect chickens from NDV challenge. These results provide important insight into the characteristic of humoral immune responses elicited by HN of NDV in vivo.  相似文献   

14.
新城疫分离毒HN基因的分子特性和片段同源相关性   总被引:6,自引:0,他引:6  
选取国内1997-2005年分离的新城疫病毒(Newcastle disease virus,NDV)24株,经蚀斑纯化克隆其血凝素-神经氨酸酶(HN)基因,与在GenBank发表的36株国内外不同时期的NDV毒株,进行氨基酸遗传变异分析,并利用SPSS8.0软件对其不同片段的氨基酸进行同源相关比较。结果显示:国内所有NDV分离毒株氨基酸高度同源,同源性为94.4%-99.4%;与LaSota、Clone30疫苗株等的氨基酸同源性为86.9%-89%;与强毒株F48E9的氨基酸同源性为87.9%-89.9%;与国外NDV的氨基酸同源性为87.2%-96.2%。系统发育分析表明:国内NDV分离毒HN遗传距离较近,而与LaSota、Clone30和F48E9遗传距离较远。国内NDV分离毒均缺乏538-540位糖基化位点。不同片段与全长的氨基酸同源性高度相关,且与前80个氨基酸相关最密切。  相似文献   

15.
Newcastle disease virus (NDV) can cause severe disease in chickens. Although NDV vaccines exist, there are frequent reports of outbreaks in vaccinated chickens. During 2009–2010, despite intense vaccination, NDV caused major outbreaks among commercial poultry farms in Indonesia. These outbreaks raised concern regarding the protective immunity of current vaccines against circulating virulent strains in Indonesia. In this study, we investigated whether a recombinant attenuated Indonesian NDV strain could provide better protection against prevalent Indonesian viruses. A reverse genetics system for the highly virulent NDV strain Banjarmasin/010/10 (Ban/010) isolated in Indonesia in 2010 was constructed. The Ban/010 virus is classified in genotype VII of class II NDV, which is genetically distinct from the commercial vaccine strains B1 and LaSota, which belong to genotype II, and shares only 89 and 87% amino acid identity for the protective antigens F and HN, respectively. A mutant virus, named Ban/AF, was developed in which the virulent F protein cleavage site motif “RRQKR↓F” was modified to an avirulent motif “GRQGR↓L” by three amino acid substitutions (underlined). The Ban/AF vaccine virus did not produce syncytia or plaques in cell culture, even in the presence of added protease. Pathogenicity tests showed that Ban/AF was completely avirulent. Ban/AF replicated efficiently during 10 consecutive passages in chickens and remained genetically stable. Serological analysis showed that Ban/AF induced higher neutralization and hemagglutination inhibition antibody titers against the prevalent viruses than the commercial vaccines B1 or LaSota. Both Ban/AF and commercial vaccines provided protection against clinical disease and mortality after challenge with virulent NDV strain Ban/010 (genotype VII) or GB Texas (genotype II). However, Ban/AF significantly reduced challenge virus shedding from the vaccinated birds compared to B1 vaccine. These results suggest that Ban/AF can provide better protection than commercial vaccines and is a promising vaccine candidate against NDV strains circulating in Indonesia.  相似文献   

16.
The nucleotide (nt) sequence of the 5508-nt intergenic spacer (IGS), between the 25S- and the 18S-coding regions of Cucurbita maxima rDNA, was determined. The fragment sequenced is 6142 nt long and includes 472 nt of 25S- and 162 nt of 18S-coding regions. The IGS has a complex primary structure, composed of five repetitive families (A-E) and three unique domains. It is dominated by the presence of nine, tandemly-repeating units of approximately 250 nt (repeat D), each unit containing four copies of an internal subrepeat (repeat E). The repetitive units show sequence variability consisting of nt changes, insertions and deletions. Upstream of the nine D repeats and between two copies of the B repeat is a 575-nt region, highly G + C rich (83%) and heavily biased toward C (58%) in the sense strand. Within this region are six repetitive units, averaging 42 nt (repeat C) each, containing but a single A nt. Downstream from the terminus of the 25S-coding sequence, are two tandem copies of the 103-nt A repeat. The IGS of C. maxima is longer and more complex than that of other plant IGSs described to date. The 600 nt at the 5' portion of cucurbit IGS is more conserved in evolution than the remainder, as revealed by comparison of C. maxima and C. pepo IGS restriction maps and by nucleotide sequence comparison of C. maxima and Cucumis sativa IGSs.  相似文献   

17.
18.
19.
Rout SN  Samal SK 《Journal of virology》2008,82(16):7828-7836
Naturally occurring Newcastle disease virus (NDV) strains vary greatly in virulence, ranging from no apparent infection to severe disease causing 100% mortality in chickens. The viral determinants of NDV virulence are not completely understood. Cleavage of the fusion protein is required for the initiation of infection, and it acts as a determinant of virulence. The attachment protein HN was found to play a minor role in virulence. In this study, we have evaluated the role of the internal proteins (N, P, and L) in NDV virulence by using a chimeric reverse-genetics approach. The N, P, and L genes were exchanged individually between an avirulent NDV strain, LaSota, and an intermediate virulent NDV strain, Beaudette C (BC), and the N and P genes were also exchanged together. The recovered chimeric viruses were evaluated for their pathogenicity in the natural host, chickens. Our results showed that the pathogenicities of N and P chimeric viruses were similar to those of their respective parental viruses, indicating that the N and P genes probably play minor roles in virulence. However, replacement of the L gene of BC with that of LaSota significantly increased the pathogenicity of the L-chimeric virus, suggesting that the L gene probably contributes to the virulence of NDV. The L-chimeric BC virus was found to replicate at a 100-fold-higher level than its parental virus in chicken brain, suggesting that the increase in pathogenicity may be due to the increased replication level of the chimeric virus. Our findings offer new insights into the pathogenesis of NDV infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号