首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
【背景】功能作图(functionalmapping)模型是基于统计方法的分析生物体动态复杂性状发育的全基因组作图方法,旨在定位性状发育过程中的数量性状位点(quantitative trait loci, QTL),将功能作图应用于微生物研究有助于解析复杂的互作过程。【目的】利用功能作图定位两种微生物在动态生长发育过程中发挥显著作用的QTL,通过基因功能注释找到影响微生物表型生长的基因。【方法】将大肠杆菌和金黄色葡萄球菌各100个菌株单独培养和一一配对共同培养,将取得的各菌株生长丰度表型数据和单核苷酸多态性(singlenucleotidepolymorphism,SNP)数据进行关联分析,找到同一物种在不同培养条件下对生长起作用的显著QTL。【结果】通过功能作图分析,在大肠杆菌中定位到217个QTL,金黄色葡萄球菌中定位到152个QTL;通过功能聚类和基因注释分析发现,QTL所在候选基因中金黄色葡萄球菌scdA、sdrC、sdrD、ftsA和大肠杆菌phr、nagC、eptA、ppsA、priA、flim基因对微生物的生长发挥了较大作用。【结论】本文借助功能作图定位了大肠杆菌和金黄...  相似文献   

2.
为了全面了解亚麻产量和品质相关性状的遗传基础,为亚麻基因克隆和分子标记辅助育种提供理论依据,在已构建SNP连锁遗传图谱的基础上,以LH-89为父本,R43为母本构建F2:3家系QTL定位群体,用R/QTL软件采用复合区间作图法对13个农艺和品质性状进行QTL定位。结果表明:(1)该研究共检测出35个QTL位点,与粗脂肪及其组成成分相关的QTL有20个,与农艺性状相关的QTL有15个;其中:亚油酸和粗脂肪各5个,亚麻酸、千粒重各4个,棕榈酸、株高、工艺长度各3个,硬脂酸、分枝数各2个,单株果数、果粒数、单株粒重、油酸各1个。(2)共有18个QTL的表型贡献率超10%(主效基因),其中农艺性状定位8个主效基因,品质性状定位10个主效基因。  相似文献   

3.
以六倍体裸燕麦578(大粒品种)和三分三(小粒品种)为亲本进行杂交,构建包含202个家系的F2遗传作图群体。由172个SSR标记构建出包含21个连锁群的遗传连锁图谱。采用复合区间作图对子粒性状进行QTL定位,共检测到17个控制子粒长度、宽度、千粒重的QTL位点。其中,6个与子粒长度相关的QTL位点表型的贡献率为0.70%~12.83%,5个与子粒宽度相关的QTL位点表型的贡献率为0.77%~12.92%,6个与子粒千粒重相关的QTL位点表型的贡献率为0.58%~10.64%。在这些QTLs中有4个的贡献率达到了10%以上,分别是与子粒长有关的qGL-2(12.83%)、与子粒宽有关的qGW-5(12.92%)以及与千粒重有关的qTGW-3(10.64%)和qTGW-4(10.05%),被认为是主效基因所在位点。而且qGL-2和qTGW-4位于连锁群的相同位置上。还发现第3号连锁群上AM1089~AM1512区段分别与子粒长度、宽度和千粒重相关,同时3号连锁群AM86-2~AM1044区间分别与子粒长度和千粒重相关,而位于第21号连锁群AM3217~AM965区段分别与子粒宽度和千粒重相关。这一研究为燕麦子粒性状的深入研究和相关标记开发以及分子辅助选择研究奠定了基础。  相似文献   

4.
植物数量性状基因定位研究概述   总被引:1,自引:0,他引:1  
植物重要的性状多为数量性状。长期以来,人类一直寻求解释植物数量性状的遗传规律以便对其进行遗传操纵。现代分子生物技术的发展为植物数量性状基因的定位、分离等研究提供了条件。本文从数量性状基因座(QTL)作图群体类型及其特点,QTL定位方法,植物QTL研究现状,以及QTL精细定位、克隆、利用等方面进行了综述,并对今后植物QTL研究进行了展望。  相似文献   

5.
利用苹果栽培品种‘红富士’和新疆野苹果优系‘红肉苹果’杂交的110个F1株系为作图群体,构建了苹果的分子遗传图谱,采用区间作图法对苹果9个叶片相关性状(叶片长度、叶片宽度、叶片厚度、叶柄长度、叶片面积、总叶绿素含量、叶绿素a含量、叶绿素b含量和类胡萝卜素含量)进行了QTL定位分析。结果显示:从110个F1株系中共检测到20个控制叶片相关性状的QTL位点,分布在第1、2、3、4、5、7、8、10、11、12、16、17连锁群上;各QTL位点的LOD值在2.58~3.55之间,其中主效QTL位点2个(LOD≥3.5),可解释11.63%~16.36%的表型变异。获得紧密连锁的特异标记(CH05d11-435m、CH04c06-201m)为进一步进行QTL精细定位提供了参考。  相似文献   

6.
植物数量性状基因定位研究概述   总被引:10,自引:0,他引:10  
植物重要的性状多为数量性状。长期以来,人类一直寻求解释植物数量性状的遗传规律以便对其进行遗传操纵。现代分子生物技术的发展为植物数量性状基因的定位、分离等研究提供了条件。本文从数量性状基因座(QTL)作图群体类型及其特点,QTL定位方法,植物QTL研究现状,以及QTL精细定位、克隆、利用等方面进行了综述,并对今后植物QTL研究进行了展望。  相似文献   

7.
QTL定位的研究方法   总被引:2,自引:0,他引:2  
李宏 《生物学通报》2002,37(6):53-54
QTL 定位就是采用类似单基因定位的方法将QTL定位在遗传图谱上 ,确定 QTL与遗传标记间的距离 (以重组率表示 ) [1]。根据标记数目的不同 ,可分为单标记、双标记和多标记几种方法。根据统计分析方法的不同 ,可分为方差与均值分析法、回归及相关分析法、矩估计及最大似然法等。根据标记区间数可分为零区间作图、单区间作图和多区间作图。此外 ,还有将不同方法结合起来的综合分析方法 ,如 QTL复合区间作图 (CIM)、多区间作图 (MIM)、多 QTL作图、多性状作图 (MTM)等等。建立在标记与数量性状之间相互关联基础上的关联分析方法主要有…  相似文献   

8.
试验拟对谷子重要农艺性状进行数量性状位点QTL分析。以表型差异较大的沈3/晋谷20F2作图群体为材料,观测其株高、穗长等性状,选用SSR做分子标记,利用完备区间作图法(BASTEN C J)进行QTL分析。结果显示,表型数据在作图群体中呈现连续分布,表现为多基因控制的数量性状,被整合的54个SSR标记构建10个连锁群,LOD阈值设置为2.0,检测到与株高相关的主效QTL2个,联合贡献率45.9637%,穗长主效QTL1个,贡献率14.9647%,与穗重、粒重相关的主效QTL为同一位点,贡献率分别为11.9601%和10.1879%。有6组QTL位点之间存在基因互作效应,大小范围为-0.4986-16.6407,对性状的贡献率在2.2716%至6.7478%之间。谷子表型控制复杂,相关QTL的检测受环境影响较大,不同连锁群QTL间互作明显。  相似文献   

9.
梨分子遗传图谱构建及生长性状的QTL分析   总被引:11,自引:1,他引:10  
利用鸭梨和京白梨杂交得到的F1(145株)实生苗为作图群体,通过对AFLP和SSR两种分子标记的遗传连锁分析,应用Joinmap 3.0作图软件,368个AFLP标记、34个SSR标记构建了分属18个连锁群的梨分子遗传连锁图谱,各连锁群的LOD值在4.0~7.0范围之间,图谱总长度覆盖梨基因组1395.9cM,平均图距为3.8cM.采用区间作图法,对该群体与生长性状相关的调查数据进行QTL分析,检测到与新梢生长量、新梢茎粗、节间长度、节间数量、树干径、树高及皮孔密度7个农艺性状连锁的QTL位点35个,其中主效QTL位点11个(LOD≥3.5).与生长性状相关的农艺性状QTL位点多集中在LG16连锁群上.  相似文献   

10.
利用小麦中国春(母本)和兰考大粒(父本)F2群体构建了169个标记的分子遗传图谱,将F2∶3家系分别种植于3个环境中,利用基于完备区间混合模型的单环境作图模型和多环境作图模型对小麦籽粒容重、硬度、蛋白含量和结合水含量性状进行了QTL分析。结果显示:(1)两种作图模型下,检测到容重的6个共同QTL(QTW-6B-6、QTW-7B-6、QTW-7B-9、QTW-5D-2、QTW-6D-1、QTW-6D-4),单环境模型下遗传贡献率为1.99%~6.57%,多环境模型下遗传贡献率为3.66%~20.07%,其中QM TW-7B-9、QM TW-6D-1和QM TW-6D-4在多环境模型中表现为主效QTL。(2)检测到硬度的3个共同QTL(QHD-4A-5、QHD-7A-1和QHD-7B-9),单环境模型下的遗传贡献率为6.00%~6.95%,多环境模型中遗传贡献率为5.43%~9.64%。(3)检测到蛋白含量1个共同QTL(QPR-6D-1),单环境模型下的遗传贡献率为5.39%,多环境模型中遗传贡献率为10.06%,表现为主效QTL。(4)检测到籽粒结合水含量1个共同QTL(QMO-1B-4),单环境模型下的遗传贡献率为39.20%,多环境模型下的遗传贡献率为75.01%,均表现为主效QTL。(5)1B染色体上存在同时控制籽粒容重、硬度、蛋白和结合水含量的QTL,说明1B染色体对小麦品质的影响可能很大。研究表明,小麦容重、硬度、蛋白含量、结合水含量的遗传主要受加性效应控制。该研究初步定位的一些重要QTL可为进一步精细定位、基因挖掘和育种早代品质性状分子标记辅助选择提供依据。  相似文献   

11.
Yang R  Gao H  Wang X  Zhang J  Zeng ZB  Wu R 《Genetics》2007,177(3):1859-1870
Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age.  相似文献   

12.
ABSTRACT: BACKGROUND: Although many experiments have measurements on multiple traits, most studies performed the analysis of mapping of quantitative trait loci (QTL) for each trait separately using single trait analysis. Single trait analysis does not take advantage of possible genetic and environmental correlations between traits. In this paper, we propose a novel statistical method for multiple trait multiple interval mapping (MTMIM) of QTL for inbred line crosses. We also develop a novel score-based method for estimating genome-wide significance level of putative QTL effects suitable for the MTMIM model. The MTMIM method is implemented in the freely available and widely used Windows QTL Cartographer software. RESULTS: Throughout the paper, we provide compelling empirical evidences that: (1) the score-based threshold maintains proper type I error rate and tends to keep false discovery rate within an acceptable level; (2) the MTMIM method can deliver better parameter estimates and power than single trait multiple interval mapping method; (3) an analysis of Drosophila dataset illustrates how the MTMIM method can better extract information from datasets with measurements in multiple traits. CONCLUSIONS: The MTMIM method represents a convenient statistical framework to test hypotheses of pleiotropic QTL versus closely linked nonpleiotropic QTL, QTL by environment interaction, and to estimate the total genotypic variance-covariance matrix between traits and to decompose it in terms of QTL-specific variance-covariance matrices, therefore, providing more details on the genetic architecture of complex traits.  相似文献   

13.
远交群体动态性状基因定位的似然分析Ⅰ.理论方法   总被引:3,自引:0,他引:3  
杨润清  高会江  孙华  Shizhong Xu 《遗传学报》2004,31(10):1116-1122
受动物遗传育种中用来估计动态性状育种值的随机回归测定日模型思想的启发 ,将关于时间 (测定日期 )的Legendre多项式镶嵌在遗传模型的每个遗传效应中 ,以刻画QTL对动态性状变化过程的作用 ,从而建立起动态性状基因定位的数学模型。利用远交设计群体 ,阐述了动态性状基因定位的似然分析原理 ,推导了定位参数似然估计的EM法两步求解过程。结合动态性状遗传分析的特点和普通数量性状基因定位研究进展 ,还提出了有关动态性状基因定位进一步研究的设想  相似文献   

14.
Hou W  Li H  Zhang B  Huang M  Wu R 《Heredity》2008,101(4):321-328
Functional mapping has emerged as a next-generation statistical tool for mapping quantitative trait loci (QTL) that affect complex dynamic traits. In this article, we incorporated the idea of nonlinear mixed-effect (NLME) models into the mixture-based framework of functional mapping, aimed to generalize the spectrum of applications for functional mapping. NLME-based functional mapping, implemented with the linearization algorithm based on the first-order Taylor expansion, can provide reasonable estimates of QTL genotypic-specific curve parameters (fixed effect) and the between-individual variation of these parameters (random effect). Results from simulation studies suggest that the NLME-based model is more general than traditional functional mapping. The new model can be useful for the identification of the ontogenetic patterns of QTL genetic effects during time course.  相似文献   

15.
Multiple-interval mapping for ordinal traits   总被引:3,自引:0,他引:3       下载免费PDF全文
Li J  Wang S  Zeng ZB 《Genetics》2006,173(3):1649-1663
Many statistical methods have been developed to map multiple quantitative trait loci (QTL) in experimental cross populations. Among these methods, multiple-interval mapping (MIM) can map QTL with epistasis simultaneously. However, the previous implementation of MIM is for continuously distributed traits. In this study we extend MIM to ordinal traits on the basis of a threshold model. The method inherits the properties and advantages of MIM and can fit a model of multiple QTL effects and epistasis on the underlying liability score. We study a number of statistical issues associated with the method, such as the efficiency and stability of maximization and model selection. We also use computer simulation to study the performance of the method and compare it to other alternative approaches. The method has been implemented in QTL Cartographer to facilitate its general usage for QTL mapping data analysis on binary and ordinal traits.  相似文献   

16.
Studer AJ  Doebley JF 《Genetics》2011,188(3):673-681
Quantitative trait loci (QTL) mapping is a valuable tool for studying the genetic architecture of trait variation. Despite the large number of QTL studies reported in the literature, the identified QTL are rarely mapped to the underlying genes and it is usually unclear whether a QTL corresponds to one or multiple linked genes. Similarly, when QTL for several traits colocalize, it is usually unclear whether this is due to the pleiotropic action of a single gene or multiple linked genes, each affecting one trait. The domestication gene teosinte branched1 (tb1) was previously identified as a major domestication QTL with large effects on the differences in plant and ear architecture between maize and teosinte. Here we present the results of two experiments that were performed to determine whether the single gene tb1 explains all trait variation for its genomic region or whether the domestication QTL at tb1 fractionates into multiple linked QTL. For traits measuring plant architecture, we detected only one QTL per trait and these QTL all mapped to tb1. These results indicate that tb1 is the sole gene for plant architecture traits that segregates in our QTL mapping populations. For most traits related to ear morphology, we detected multiple QTL per trait in the tb1 genomic region, including a large effect QTL at tb1 itself plus one or two additional linked QTL. tb1 is epistatic to two of these additional QTL for ear traits. Overall, these results provide examples for both a major QTL that maps to a single gene, as well as a case in which a QTL fractionates into multiple linked QTL.  相似文献   

17.
Wu C  Li G  Zhu J  Cui Y 《PloS one》2011,6(9):e24902
Functional mapping has been a powerful tool in mapping quantitative trait loci (QTL) underlying dynamic traits of agricultural or biomedical interest. In functional mapping, multivariate normality is often assumed for the underlying data distribution, partially due to the ease of parameter estimation. The normality assumption however could be easily violated in real applications due to various reasons such as heavy tails or extreme observations. Departure from normality has negative effect on testing power and inference for QTL identification. In this work, we relax the normality assumption and propose a robust multivariate t-distribution mapping framework for QTL identification in functional mapping. Simulation studies show increased mapping power and precision with the t distribution than that of a normal distribution. The utility of the method is demonstrated through a real data analysis.  相似文献   

18.
采用最大似然区间定位法对阈模型与一般线性模型的QTL定位效率进行了比较,并对影响离散性状QTL检测效率的主要因素(QTL效应、性状的遗传力和表型发生率)进行了模拟研究,实验设计为多个家系的女儿设计.资源群体大小为500头。研究结果表明:在QTL参数估计及检验功效方面,阈模型方法具有较大的优势,对离散性状QTL定位的效率明显高于LM(Linear Model)方法,定位的准确性也较高。另外,性状遗传力、QTL效应的大小和性状表型发生率对QTL定位的准确度也有直接的影响,随着性状遗传力和表型发生率的提高,随着QTL效应的增大,QTL定位的效率也进一步提高。  相似文献   

19.
S. Xu  W. R. Atchley 《Genetics》1996,143(3):1417-1424
A composite interval gene mapping procedure for complex binary disease traits is proposed in this paper. The binary trait of interest is assumed to be controlled by an underlying liability that is normally distributed. The liability is treated as a typical quantitative character and thus described by the usual quantitative genetics model. Translation from the liability into a binary (disease) phenotype is through the physiological threshold model. Logistic regression analysis is employed to estimate the effects and locations of putative quantitative trait loci (our terminology for a single quantitative trait locus is QTL while multiple loci are referred to as QTLs). Simulation studies show that properties of this mapping procedure mimic those of the composite interval mapping for normally distributed data. Potential utilization of the QTL mapping procedure for resolving alternative genetic models (e.g., single- or two-trait-locus model) is discussed.  相似文献   

20.
Wu XL  Gianola D  Weigel K 《Genetica》2009,135(3):367-377
Methodology for joint mapping of quantitative trait loci (QTL) affecting continuous and binary characters in experimental crosses is presented. The procedure consists of a Bayesian Gaussian-threshold model implemented via Markov chain Monte Carlo, which bypasses bottlenecks due to high-dimensional integrals required in maximum likelihood approaches. The method handles multiple binary traits and multiple QTL. Modeling of ordered categorical traits is discussed as well. Features of the method are illustrated using simulated datasets representing a backcross design, and the data are analyzed using mixed-trait and single-trait models. The mixed-trait analysis provides greater detection power of a QTL than a single-trait analysis when the QTL affects two or more traits. The number of QTL inferred in the mixed-trait analysis does not pertain to a specific trait, but the roles of each QTL on specific traits can be assessed from estimates of its effects. The impacts of varying incidence level and sample size on the mixed-trait QTL mapping analysis are investigated as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号