首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Multiprotein complexes catalyze vital biological functions in the cell. A paramount objective of the SPINE2 project was to address the structural molecular biology of these multiprotein complexes, by enlisting and developing enabling technologies for their study. An emerging key prerequisite for studying complex biological specimens is their recombinant overproduction. Novel reagents and streamlined protocols for rapidly assembling co-expression constructs for this purpose have been designed and validated. The high-throughput pipeline implemented at IGBMC Strasbourg and the ACEMBL platform at the EMBL Grenoble utilize recombinant overexpression systems for heterologous expression of proteins and their complexes. Extension of the ACEMBL platform technology to include eukaryotic hosts such as insect and mammalian cells has been achieved. Efficient production of large multicomponent protein complexes for structural studies using the baculovirus/insect cell system can be hampered by a stoichiometric imbalance of the subunits produced. A polyprotein strategy has been developed to overcome this bottleneck and has been successfully implemented in our MultiBac baculovirus expression system for producing multiprotein complexes.  相似文献   

2.
MultiBac: expanding the research toolbox for multiprotein complexes   总被引:1,自引:0,他引:1  
Protein complexes composed of many subunits carry out most essential processes in cells and, therefore, have become the focus of intense research. However, deciphering the structure and function of these multiprotein assemblies imposes the challenging task of producing them in sufficient quality and quantity. To overcome this bottleneck, powerful recombinant expression technologies are being developed. In this review, we describe the use of one of these technologies, MultiBac, a baculovirus expression vector system that is particularly tailored for the production of eukaryotic multiprotein complexes. Among other applications, MultiBac has been used to produce many important proteins and their complexes for their structural characterization, revealing fundamental cellular mechanisms.  相似文献   

3.
Baculovirus expression system for heterologous multiprotein complexes   总被引:7,自引:0,他引:7  
The discovery of large multiprotein complexes in cells has increased the demand for improved heterologous protein production techniques to study their molecular structure and function. Here we describe MultiBac, a simple and versatile system for generating recombinant baculovirus DNA to express protein complexes comprising many subunits. Our method uses transfer vectors containing a multiplication module that can be nested to facilitate assembly of polycistronic expression cassettes, thereby minimizing requirements for unique restriction sites. The transfer vectors access a modified baculovirus DNA through Cre-loxP site-specific recombination or Tn7 transposition. This baculovirus has improved protein expression characteristics because specific viral genes have been eliminated. Gene insertion reactions are carried out in Escherichia coli either sequentially or concurrently in a rapid, one-step procedure. Our system is useful for both recombinant multiprotein production and multigene transfer applications.  相似文献   

4.
The baculovirus expression vector system (BEVS) is a widely used platform for the production of recombinant eukaryotic proteins. However, the BEVS has limitations in comparison to other higher eukaryotic expression systems. First, the insect cell lines used in the BEVS cannot produce glycoproteins with complex‐type N‐glycosylation patterns. Second, protein production is limited as cells die and lyse in response to baculovirus infection. To delay cell death and lysis, we transformed several insect cell lines with an expression plasmid harboring a vankyrin gene (P‐vank‐1), which encodes an anti‐apoptotic protein. Specifically, we transformed Sf9 cells, Trichoplusia ni High FiveTM cells, and SfSWT‐4 cells, which can produce glycoproteins with complex‐type N‐glycosylation patterns. The latter was included with the aim to increase production of glycoproteins with complex N‐glycans, thereby overcoming the two aforementioned limitations of the BEVS. To further increase vankyrin expression levels and further delay cell death, we also modified baculovirus vectors with the P‐vank‐1 gene. We found that cell lysis was delayed and recombinant glycoprotein yield increased when SfSWT‐4 cells were infected with a vankyrin‐encoding baculovirus. A synergistic effect in elevated levels of recombinant protein production was observed when vankyrin‐expressing cells were combined with a vankyrin‐encoding baculovirus. These effects were observed with various model proteins including medically relevant therapeutic proteins. In summary, we found that cell lysis could be delayed and recombinant protein yields could be increased by using cell lines constitutively expressing vankyrin or vankyrin‐encoding baculovirus vectors. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1496–1507, 2017  相似文献   

5.
Elucidation of the molecular basis of protein-interaction networks, in particular in higher eukaryotes, is hampered by insufficient quantities of endogenous multiprotein complexes. Present recombinant expression methods often require considerable investment in both labor and materials before multiprotein expression, and after expression and biochemical analysis these methods do not provide flexibility for expressing an altered multiprotein complex. To meet these demands, we have recently introduced MultiBac, a modular baculovirus-based system specifically designed for eukaryotic multiprotein expression. Here we describe new transfer vectors and a combination of DNA recombination-based methods, which further facilitate the generation of multigene cassettes for protein coexpression (Fig. 1), thus providing a flexible platform for generation of protein expression vectors and their rapid regeneration for revised expression studies. Genes encoding components of a multiprotein complex are inserted into a suite of compatible transfer vectors by homologous recombination. These progenitor constructs are then rapidly joined in the desired combination by Cre-loxP-mediated in vitro plasmid fusion. Protocols for integration of the resulting multigene expression cassettes into the MultiBac baculoviral genome are provided that rely on Tn7 transposition and/or Cre-loxP reaction carried out in vivo in Escherichia coli cells tailored for this purpose. Detailed guidelines for multigene virus generation and amplification, cell culture maintenance and protein production are provided, together with data illustrating the simplicity and remarkable robustness of the present method for multiprotein expression using a composite MultiBac baculoviral vector.  相似文献   

6.
昆虫杆状病毒表达载体系统在疫苗研究中的应用进展   总被引:1,自引:0,他引:1  
昆虫杆状病毒表达载体系统(Baculovirus expression vector system,BEVS)已成功应用于多种蛋白的表达,并为疫苗开发提供了充足的原材料。相比其他表达系统,BEVS具有许多优势:杆状病毒专一寄生于无脊椎动物,安全性高;重组蛋白表达水平高;可对重组蛋白进行正确折叠和翻译后修饰,获得具有生物活性的蛋白;适应于多基因表达如病毒样颗粒(Virus-like particle)的复杂设计;适用于大规模无血清培养等。为了更好地理解BEVS在疫苗研究中的应用前景,文中将从BEVS的发展及其在疫苗研究中的应用等方面进行综述。  相似文献   

7.
The baculovirus expression vector system (BEVS) is a popular manufacturing platform for the production of recombinant proteins, antiviral vaccines, gene therapy vectors, and biopesticides. Besides its successful applications in the industrial sector, the system has also played a significant role within the academic community given its extensive use in the production of hard-to-express eukaryotic multiprotein complexes for structural characterization for example. However, as other expression platforms, BEVS has to be continually improved to overcome its limitation and adapt to the constant demand for manufacturing processes that provide recombinant products with improved quality at higher yields and lower production cost.RNA interference, or RNAi, is a relatively recent technology that has revolutionized how scientist study gene function. Originally introduced as a tool to study biological and disease-related processes it has recently been applied to improve the yield and quality of recombinant proteins produced in several expression systems. In this review, we provide a comprehensive summary of the impact that RNAi-mediated silencing of cellular or viral genes in the BEVS has on the production of recombinant products. We also propose a critical analysis of several aspects of the methodologies described in the literature for the use of RNAi technology in the BEVS with the intent to provide the reader with eventually useful guidance for designing experiments.  相似文献   

8.
9.
The baculovirus expression vector system (BEVS) has become one of the most versatile and powerful eukaryotic systems for recombinant protein expression. We have constructed a novel baculovirus transfer vector (pbacAVs+C) which allows for the efficient production, detection, and single-step purification of the desired molecule as a secretion-compatible avidin fusion protein in insect cells. It also enables fast construction of the baculoviruses by site-specific transposition in Escherichia coli. To demonstrate the power of this vector, we report here on the production of immunologically intact hevein, a major cysteine-rich latex allergen, as avidin fusion protein. Our results indicate that avidin is a stable and versatile tag in the BEVS. It retains its extraordinarily high biotin-binding activity and also enables independent folding of the fusion partner. The versatility with which avidin fusion proteins can be detected, purified, and immobilized is the basis for the use of our system as a useful alternative in eukaryotic fusion protein production.  相似文献   

10.
The insect baculovirus expression vector system (BEVS) is useful for the production of biologically active recombinant proteins. However, the overexpression of foreign proteins in this system often results in misfolded proteins and the formation of protein aggregates. To overcome this limitation, we have developed a versatile baculovirus expression and secretion system using the Bombyx mori protein disulfide isomerase (bPDI) as a fusion partner. bPDI gene fusion improved the secretion and antibacterial activity of recombinant enbocin proteins. Thus, bPDI gene fusion is a useful addition to the BEVS for the large-scale production of bioactive recombinant proteins.  相似文献   

11.
昆虫杆状病毒系统表达外源蛋白的糖基化   总被引:4,自引:0,他引:4  
昆虫表达系统作为一类应用广泛的真核表达系统 ,具有与多数高等真核生物相类似的翻译后修饰的过程。但其生产的重组糖蛋白一般仅具有高甘露糖或寡甘露糖型糖链 ,难以生成复杂构型糖链成为该系统的缺陷之一。综述了目前昆虫杆状病毒系统表达外源蛋白的糖基化研究进展。  相似文献   

12.
Goo TW  Yun EY  Kim SW  Choi KH  Kang SW  Kwon K  Yu K  Kwon OY 《BMB reports》2008,41(5):400-403
The insect baculovirus expression vector system (BEVS) is useful for producing biologically active recombinant proteins. However, the overexpressions of foreign proteins using this system often results in misfolded proteins and the formation of protein aggregates. To overcome this limitation, we developed a versatile baculovirus expression and secretion system using Bombyx mori protein disulfide isomerase (bPDI) as a fusion partner. bPDI gene fusion was found to improve the secretions and antibacterial activities of recombinant nuecin proteins. Thus, we conclude that bPDI gene fusion is a useful addition to BEVS for the large-scale production of bioactive recombinant proteins.  相似文献   

13.
Baculovirus expression vector system (BEVS) in host insect cells is a powerful technology to produce recombinant proteins, as well as virus-like particles (VLP). However, BEVS is based on baculovirus infection, which limits the recombinant protein production by inducing insect cell death. Herein a new strategy to enhance cell life span and to increase recombinant protein production was developed. As baculovirus infection induces cellular oxidative stress, the ability of several antioxidants to inhibit cell death was tested during infection. The production of rotavirus structural proteins was used as model to analyse this new strategy. We found that only catalase is able to partially prevent cell death triggered by baculovirus infection and to inhibit lipid peroxidation. An increase in recombinant protein production was coupled with the partial cell death inhibition. In summary, the addition of catalase is a promising strategy to improve recombinant protein production in BEVS, by delaying insect cell death.  相似文献   

14.
Apoptosis is a major problem in animal cell culture during production of biopharmaceuticals, such as recombinant proteins or viral particles. In the present work baculovirus-insect cell expression system (BEVS/IC) is used as model to produce rotavirus like-particles, composed by three layers of three different viral proteins (VP2, VP6 and VP7). In this model baculovirus infection also induces host cell death. Herein a new strategy to enhance cell life span and to increase recombinant rotavirus protein production of BEVS/IC system was developed. This strategy relies on hemolymph from Lonomia oblique (total extracts or a semi-purified fraction) medium supplementation. The total extract and a purified fraction from hemolymph of Lonomia obliqua were able to protect Sf-9 cell culture against apoptosis triggered by oxidative stress (using the pro-oxidant agents tert butylhydroperoxide and hydrogen peroxide) and by baculovirus infection. Furthermore, hemolymph enhance final recombinant protein production, as it was observed by the increased amounts of VP6 and VP7, which were measured by the semi-quantitative western blot method. In conclusion, hemolymph medium supplementation can be a promising strategy to improve cell viability and productivity of recombinant protein in BEVS/IC system.  相似文献   

15.
昆虫杆状病毒表达载体系统的研究及应用   总被引:2,自引:0,他引:2  
昆虫杆状病毒表达载体系统具有表达水平高、表达产物可进行翻译后加工,并可通过感染昆虫幼虫而实现大规模低成本生产基因工程产品,该系统的建立和发展,被誉为20世纪80年代真核表达研究领域的一个重大进展。文章介绍了该系统的产生、发展和技术原理,同时概述了该系统在基础研究、医药和农林业等领域的应用情况。  相似文献   

16.
We are witnessing tremendous advances in our understanding of the organization of life. Complete genomes are being deciphered with ever increasing speed and accuracy, thereby setting the stage for addressing the entire gene product repertoire of cells, towards understanding whole biological systems. Advances in bioinformatics and mass spectrometric techniques have revealed the multitude of interactions present in the proteome. Multiprotein complexes are emerging as a paramount cornerstone of biological activity, as many proteins appear to participate, stably or transiently, in large multisubunit assemblies. Analysis of the architecture of these assemblies and their manifold interactions is imperative for understanding their function at the molecular level. Structural genomics efforts have fostered the development of many technologies towards achieving the throughput required for studying system-wide single proteins and small interaction motifs at high resolution. The present shift in focus towards large multiprotein complexes, in particular in eukaryotes, now calls for a likewise concerted effort to develop and provide new technologies that are urgently required to produce in quality and quantity the plethora of multiprotein assemblies that form the complexome, and to routinely study their structure and function at the molecular level. Current efforts towards this objective are summarized and reviewed in this contribution.Key Words: Proteome, interactome, multiprotein assemblies, structural genomics, robotics, multigene expression, multiBac, BEVS, ACEMBL, complexomics.  相似文献   

17.
Many eukaryotic proteins exist in large multisubunit assemblies and often show compromised folding or activity when their interaction partners are not present. Protein complexes in eukaryotes can contain ten or more subunits with individual polypeptides ranging in size up to several hundred kilodalton, severely restricting the application of conventional cloning strategies and imposing constraints on the choice of the expression host. Modern structural molecular biology often depends on introducing diversity into the specimens under investigation, including mutation, truncation and placement of purification aids. Current recombinant expression methods often require a disproportionate labor investment prior to multiprotein expression, and subsequent to expression and analysis do not provide for rapid revision of the experiment. We have developed reagents and protocols for rapid and flexible multiprotein complex expressions suitable for structural biology, focusing on multigene baculoviral vectors and their recombination mediated assembly. A top priority in protein science is automation. Our strategy can be readily adapted in a robotics setup, for baculovirus/insect cell expression of protein complexes, but likewise also for mammalian or prokaryotic hosts.  相似文献   

18.
Wu TY  Wu CY  Chen YJ  Chen CY  Wang CH 《FEBS letters》2007,581(16):3120-3126
A bicistronic baculovirus expression vector and fluorescent protein-based assays were used to identify the sequences that possess internal translation activity in baculovirus-infected insect cells. We demonstrated that the 5' untranslated region (5'UTR; 473 nucleotides) of Perina nuda virus (PnV) and the 5'UTR (579 nucleotides) of Rhopalosiphum padi virus (RhPV), but not the IRES sequence of Cricket paralysis virus, have internal translation activity in baculovirus-infected Sf21 cells. In addition, we found that including the first 22 codons of the predicted PnV open reading frame (ORF; a total of 539 nucleotides) enhanced internal translation activity by approximately 18 times. This is the first report of internal translation activity for a baculovirus expression system (BEVS) in the iflavirus 5' sequence and may facilitate the development of polycistronic baculovirus transfer vectors that can be used in BEVS for the production of multiple protein complexes.  相似文献   

19.
The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号