首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 753 毫秒
1.
李娘辉 《植物学报》1998,15(Z1):18-23
 本文对胞质蛋白转运到叶绿体的研究进展进行了综述,包括胞质蛋白转移到叶绿体的重要性质胞质叶绿体蛋白的种类,引导肽的结构和功能,胞质蛋白转运到叶绿体的机理等。  相似文献   

2.
李娘辉 《植物学通报》1998,15(A00):18-23
本文对胞质转运到叶绿体的研究进展进行了综述,包括胞质蛋白转移到叶绿体的重要性,胞质叶绿体蛋白的种类,引导肽的结构和功能,胞质蛋白转运到叶绿体的机理等。  相似文献   

3.
蛋白质向叶绿体的转运   总被引:4,自引:0,他引:4  
对近年来叶绿体蛋白质前导肽序列、叶绿体被膜中的蛋白质转运器、监护蛋白在蛋白转运过程中的作用、蛋白质导入叶绿体的途径、前体蛋白的加工的研究进展进行了介绍和评述  相似文献   

4.
转运肽对于大多数蛋白转运到叶绿体是必需的。虽然利用生物信息学分析可预测蛋白的定位信息及转运肽的序列信息,但转运肽的转运效果仍需要进一步的验证。本研究基于Gen Bank所报道的番茄Rubisco小亚基叶绿体转运肽(T_(CTP))的信息,利用特异引物从番茄DNA中扩增获得一段约170bp的片段,克隆到pMD~@18-T simple载体,测序表明获得番茄Rubisco小亚基的转运肽。为了进一步验证其功能,将其连接到瞬时表达载体P322-d1-eGFP,构建瞬时表达载体TCTP-eGFP-d1,利用PEG介导法将重组瞬时表达载体转入水稻原生质体,激光共聚焦显微镜分析表明,该转运肽可以顺利将eGFP定位到叶绿体,该研究有助于TCTP的进一步应用。  相似文献   

5.
胥华伟  侯典云 《植物学报》2018,53(2):264-275
植物细胞中叶绿体的功能主要依赖于叶绿体蛋白, 大部分叶绿体蛋白由核基因组编码, 在细胞质中合成并经过正确的分选后, 通过叶绿体外膜上的Toc复合体和/或内膜上的Tic复合体转运到叶绿体的不同部位。该文主要综述可能参与叶绿体蛋白分选的胞质因子以及Toc和Tic组分如何参与叶绿体蛋白转运的研究进展。  相似文献   

6.
细菌的肽转运蛋白包括3种,寡肽转运蛋白(Oligopeptide permease,Opp)、二肽转运蛋白(Dipeptide permease,Dpp)和二/三肽转运蛋白(Di-and tripeptide permease,Dtp)。Opp和Dpp属于ABC型超家族(ATP-binding cassette superfamily)转运蛋白,利用ATP水解产生的能量实现底物转运。对Opp和Dpp研究最多的是胞外肽结合蛋白OppA和DppA,它们起着最初识别与结合底物的重要作用。Dtp属于主要协助转运蛋白超家族(Major facilitator superfamily,MFS),与质子进行底物共转运。细菌肽转运蛋白的晶体结构解析结合大量的生化数据分析,使得人们对其转运机制有了深入的了解。本文对这三种肽转运蛋白的研究进展分别进行综述。  相似文献   

7.
叶绿体中包含着各种类型蛋白酶,它们构成了一个复杂而精细的蛋白酶系统,在维持叶绿体的正常发育与功能中起着重要的作用。其中加工肽酶,如SPP、TPP及CTP,是叶绿体蛋白成熟过程中的关键酶,它们在体内一般以单体形式存在,识别前体蛋白末端的特殊位点,去除其末端短肽。而Prep、Clp、Deg和FtsH等蛋白酶一般形成多亚基的复合体,负责降解叶绿体中的损伤蛋白及无效短肽,维持叶绿体内环境的稳定。我们综述了这些蛋白酶在叶绿体中的结构功能特点及作用机制。  相似文献   

8.
秦童  黄震 《植物学报》2019,54(1):119-132
硫氧还蛋白(Trx)属于巯基-二硫键氧化还原酶家族, 通过作用于底物蛋白侧链2个半胱氨酸残基之间的二硫键(还原、异构和转移)来调控胞内蛋白的结构和功能。叶绿体Trx系统包括Trx及Trx类似蛋白、铁氧还蛋白(Fd)依赖的硫氧还蛋白还原酶(FTR)和还原型烟酰腺嘌呤二核苷磷酸(NADPH)依赖的硫氧还蛋白还原酶C (NTRC)。除了基质蛋白酶类活性变化及叶绿体蛋白的转运受Trx系统调控之外, 在叶绿体中还存在1条跨类囊体膜的还原势传递途径, 把基质Trx的还原势经跨膜转运蛋白介导, 最终传递给类囊体腔蛋白。FTR和NTRC共同作用维持叶绿体的氧化还原平衡。该文对叶绿体硫氧还蛋白系统的调节机制进行了综述, 同时讨论了叶绿体硫氧还蛋白系统对维持植物光合效率的重要意义。  相似文献   

9.
采用蔗糖密度离心方法分离完整叶绿体,进一步分离叶绿体被膜,借助SDS-PAGE分析了2种油菜叶绿体被膜的蛋白组分.用对拟南芥叶绿体外被膜上存在Toc33的特异抗体,检测到油菜叶绿体被膜上存在Toc33转运蛋白.Toc33在2种油菜中的相对含量不同,黄化油菜叶绿体被膜中高于野生油菜叶绿体被膜.  相似文献   

10.
细胞的一切功能活动,都离不开蛋白质的参与,细胞中蛋白质的合成场所有两处:基质中和RER 上的多聚核糖体上。特定蛋白有特定的合成场所和转运方式,本文简要介绍了分泌蛋白、膜嵌入蛋白、溶酶体蛋白、亲核蛋白、过氧物酶体蛋白、叶绿体蛋白、线粒体蛋白的转运方式  相似文献   

11.
绝大部分的叶绿体蛋白组份是在细胞器外合成后输入叶绿体的。它们是以含氨基端延长肽的前体形式合成的。近来的实验已证明,外源多肽与这些氨基端延长肽融合后也能被输入到叶绿体内,从而为利用遗传操作的方法改良重要的经济植物提供了令人兴奋的可能途径。 和线粒体一样,叶绿体也含有自己的遗传信息并足以进行蛋白质合成,但大多数的叶绿体蛋白是核DNA编码并在叶绿体外的细胞质核糖体上合成的(见参考文献1的综述)。实际上,叶细胞质蛋白合成的主要产物是叶绿体蛋白质的两种多肽组份即核糖-1,5-二磷酸羧化酶(rbe S)的小亚基和光捕获叶绿素a/b蛋白复合体(CAB)的组成多肽。在本篇综述中,我们将讨论目前已知的关于细胞质合成多肽输入叶绿体的机理以及最近一些证明外源多肽输入叶绿体的实验;另外还将讨论这种使外源多肽输入叶绿体能力的可能应用。  相似文献   

12.
(上接第5期第6页)3 细胞质基质中合成的蛋白质及其转运在细胞质基质中合成的蛋白质,有些仍留在基质中发挥作用,有些则转运到细胞器,如过氧物酶体、线粒体、叶绿体,或者细胞核中。3-1 过氧物酶体蛋白的转运过氧物酶体中所有的酶,以及所有的膜蛋白,都由细胞核基因编码,并在细胞质基质中合成,然后转运到过氧化物酶体中的。对这一过程了解较多的是过氧化氢酶,它是一个含血红素的四聚体蛋白,其单体在细胞质基质中合成,在某种信号序列(导肽)的指导下进入过氧物酶体,这一信号序列并不被切除。目前发现至少部分信号序列与过…  相似文献   

13.
叶绿体内膜上存在有磷酸丙糖转运器。本文着重对该转运器的结构和功能、转运特性及其对光合作用的调节等做一介绍。磷酸丙糖转运器能够催化磷、磷酸丙糖和3 磷酸甘油酸的反向交换运输,从而使光合初级产物从叶绿体转运到胞质。在生理条件下,这种转运严格遵循1∶1的反向交换原则,并且转运活性受光的调节。目前,已经从一些植物中分离到磷酸丙糖转运器蛋白,并克隆了它们的cDNA。近年来,利用基因工程手段对磷酸丙糖转运器功能的研究也取得了很重要的进展。  相似文献   

14.
根据本室分离的水稻EPSP合酶基因的基因组序列设计一对引物 ,利用RT_PCR方法首次从水稻 (Oryzasati vaL .subsp .indica)叶片的RNA中扩增获得了水稻编码EPSP合酶的全长为 15 85bp的cDNA片段 ,它含有一个完整的开放读码框 ,编码 5 11个氨基酸 ,包括 44 4个氨基酸组成的成熟肽序列以及N端的 6 7个氨基酸组成的叶绿体转运肽序列。成熟肽氨基酸序列对比表明 ,除真菌来源的EPSP合酶变异较大外 ,其他来源的EPSP合酶同源性较高 ,均在 5 1%以上。而叶绿体转运肽氨基酸序列同源性较低。Southern杂交表明水稻EPSP合酶基因在水稻基因组中以单拷贝形式存在。RT_PCR分析表明 ,水稻EPSP合酶基因在根、未成熟种子和叶片中均有转录表达 ,在叶片中表达量最高  相似文献   

15.
蔗糖转运蛋白(sucrose transporters,SUTs)属于跨膜转运蛋白,大多数参与蔗糖的吸收和转运。迄今为止,对高粱蔗糖转运蛋白知之甚少,为进一步研究高粱蔗糖转运蛋白家族(SbSUTs),本研究利用生物信息学方法对SbSUTs的6个成员(编号SbSUT1~SbSUT6)进行蛋白理化性质、基因结构、蛋白结构、同源性及系统进化树构建等分析。结果表明:SbSUTs是一种无信号肽、定位于质膜和叶绿体类囊膜上的疏水性膜蛋白;SbSUTs均具有GPH结构功能域,是高度保守的蛋白;α-螺旋和无规卷曲是主要的二级结构元件,其三级结构较为相似。本研究为探究SbSUTs蛋白家族在高粱的蔗糖吸收及转运中的功能提供理论依据。  相似文献   

16.
根据本室分离的水稻EPSP合酶基因的基因组序列设计一对引物,利用RT-PCR方法首次从水稻(Oryza sativa L. subsp. indica)叶片的RNA中扩增获得了水稻编码EPSP合酶的全长为1 585 bp的cDNA片段,它含有一个完整的开放读码框,编码511个氨基酸,包括444个氨基酸组成的成熟肽序列以及N端的67个氨基酸组成的叶绿体转运肽序列.成熟肽氨基酸序列对比表明,除真菌来源的EPSP合酶变异较大外,其他来源的EPSP合酶同源性较高,均在51%以上.而叶绿体转运肽氨基酸序列同源性较低.Southern杂交表明水稻EPSP合酶基因在水稻基因组中以单拷贝形式存在.RT-PCR分析表明,水稻EPSP合酶基因在根、未成熟种子和叶片中均有转录表达,在叶片中表达量最高.  相似文献   

17.
叶绿体内膜上存在有磷酸丙糖转动器。本文着重转运器的结构和功能、转运特性及其对光合作用的调节等做一介绍。磷酸丙糖转运器能够催化磷、磷酸丙糖和3-磷酸甘油酸的反向交换运输,从而使光合初级产物从叶绿体转运到胞质。在生理条件下,这种转动严格遵循1:1的反向交换原则,并且转动活性受光的调节。目前,已经从一些植物中分离到磷酸丙糖转运器蛋白,并克隆了它们的cDNA。近年来,利用基因工程手段对磷酸丙糖转运器功能的研究也取得了很重要的进展。  相似文献   

18.
肽转运载体的分子特征及其分布   总被引:4,自引:0,他引:4  
Han F  Le GW  Shi YH 《生理科学进展》2003,34(3):222-226
动物体内的肽转运载体目前发现的至少有五种,其中研究最为广泛的是:PepT1和PepT2。PepT1和PepT2都是依质子的寡肽转运载体(POT)家族的成员。PepT1是低亲和力/高容量的肽载体,PepT2高亲和力/低容量的肽载体。PepT1主要在消化道中表达,在肾脏中也有微弱的表达;PepT2主要在肾脏中表达。这些肽载体的分子结构特征主要有:(1)有12个假想的穿膜区,在9区和10区之间有一大的胞外环,且所有穿膜区内的序列都高度保守,胞外环上的序列保守的很少;(2)被编码的蛋白上有多个N-糖基化和蛋白激酶的识别位点,它们可能参与肽转运的调控;(3)PepT1上的His-57和PepT2上的His-87是最关键的组氨酸残基,它们可能是转运蛋白发挥吸收功能时最关键的结合位点;(4)不同动物肽转运蛋白的氨基酸范围在707到729之间,且不同动物相同器官肽转运载体的同源性高(大约80%),同种动物不同器官肽转运载体的同源性低(大约50%)。了解肽载体的分子特征和组织分布,可以更好地理解肽吸收的分子机制并有利于肽类药物的研发。  相似文献   

19.
杆菌肽是微生物产生的由11种氨基酸残基组成的广谱性抗生素,前体物的供应可能是限制杆菌肽高产的重要因素。文中通过支链氨基酸(异亮氨酸、亮氨酸、缬氨酸)的添加实验考察了前体物质支链氨基酸对杆菌肽高产的影响,证实了异亮氨酸(Ile)和亮氨酸(Leu)的添加可以提高杆菌肽的效价,其中Ile的添加对杆菌肽效价提高的效果较为明显。随后,文中以地衣芽胞杆菌DW2为出发菌株,分别构建了支链氨基酸转运蛋白Yhd G的缺失和强化表达菌株。发酵结果表明,转运蛋白Yhd G缺失工程菌DW2△yhd G的杆菌肽效价达到917.35 U/m L,与原始菌DW2相比提高了11%,而强化Yhd G则会使杆菌肽效价下降25%。最后通过分析胞内胞外支链氨基酸含量,发现缺失转运蛋白Yhd G能够在发酵中后期显著提高胞内支链氨基酸含量,表明氨基酸转运蛋白Yhd G在地衣芽胞杆菌DW2中可能发挥着氨基酸输出的功能。综上,文中通过缺失转运蛋白Yhd G显著提高了地衣芽胞杆菌胞内支链氨基酸的供给水平,从而提高了杆菌肽效价,为杆菌肽高产菌株的构建提供了一种新的策略。  相似文献   

20.
ABC转运蛋白超家族结构和功能复杂多样, 包含ABCA-ABCH八个亚家族。ABCB是ABC转运蛋白的一个亚家族, 多数定位于质膜, 少数定位于线粒体膜或叶绿体膜。ABCB与其它生长素转运蛋白(AUX1/LAX、PIN)共同参与调控植物生长素的极性运输, 在植物生长发育的各个阶段发挥作用。此外, ABCB转运蛋白还调控植物的向性运动和重金属抗性等过程。近年来, 随着越来越多植物全基因组测序的完成, ABCB亚家族在禾谷类单子叶植物水稻(Oryza sativa)、玉米(Zea mays)和高粱(Sorghum bicolor)中的生物学功能开始有少量报道, 然而多数ABCB转运蛋白的功能尚未得到阐释。该文对拟南芥(Arabidopsis thaliana)和禾谷类作物ABCB转运蛋白的研究进展进行综述, 以期为全面揭示ABCB亚家族生物学功能提供线索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号