首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
昆虫杆状病毒作为高效的表达载体,现已广泛地用于各种外源基因的表达.但是,用传统的方法构建重组杆状病毒,存在着重组率低,纯化难及耗时长等缺点,围绕如何快速、简便、高效地构建重组杆状病毒,近几年来人们进行了一些重大的改进,包括使病毒DNA线状化以提高重组病毒的比例;在体外进行重组;同源重组和重组病毒的纯化与筛选在酵母和大肠杆菌中一次完成;使重组病毒可以形成多角体等,从而从根本上改变了传统方法中的不足;文章着重介绍了这几种新的改进方法.  相似文献   

2.
The silkworm baculovirus expression system is widely used to produce recombinant proteins. Several strategies for constructing recombinant viruses that contain foreign genes have been reported. Here, we developed a novel defective-rescue BmNPV Bacmid (reBmBac) expression system. A CopyControl origin of replication was introduced into the viral genome to facilitate its genetic manipulation in Escherichia coli and to ensure the preparation of large amounts of high quality reBmBac DNA as well as high quality recombinant baculoviruses. The ORF1629, cathepsin and chitinase genes were partially deleted or rendered defective to improve the efficiency of recombinant baculovirus generation and the expression of foreign genes. The system was validated by the successful expression of luciferase reporter gene and porcine interferon γ. This system can be used to produce batches of recombinant baculoviruses and target proteins rapidly and efficiently in silkworms.  相似文献   

3.
Viruses including baculoviruses are obligatory parasites, as their genomes do not encode all the proteins required for replication. Therefore, viruses have evolved to exploit the behavior and the physiology of their hosts and often coevolved with their hosts over millions of years. Recent comparative analyses of complete genome sequences of baculoviruses revealed the patterns of gene acquisitions and losses that have occurred during baculovirus evolution. In addition, knowledge of virus genes has also provided understanding of the mechanism of baculovirus infection including replication, species-specific virulence and host range. The Bm8 gene of Bombyx mori nucleopolyhedrovirus (NPV) and its homologues are found only in group I NPV genomes. The Autographa californica NPV Ac16 gene is a homologue of Bm8 and, encodes a viral structural protein. It has been shown that Bm8/Ac16 interacts with baculoviral and cellular proteins. Bm8/Ac16 interacts with baculoviral IE1 that is facilitated by coiled coil domains, and the interaction with IE1 is important for Bm8 function. Ac16 also forms a complex with viral FP25 and cellular actin and associates with membranes via palmitoylation. These data suggested that this gene family encodes a multifunctional protein that accomplishes specific needs of group I NPVs.   相似文献   

4.
杆状病毒作为基因治疗载体的研究进展   总被引:1,自引:0,他引:1  
杆状病毒是昆虫专一性的病原病毒.近来的研究表明杆状病毒能进入哺乳动物细胞, 但病毒自身不能在哺乳动物细胞中复制, 感染也不引起细胞病变.另外,已经证明杆状病毒能在体外或体内高效地转导许多类型哺乳动物细胞,并且能得到固定表达细胞系,显示了杆状病毒作为基因治疗载体有着良好的应用前景.综述了该领域的最新研究进展并探讨了其发展趋势.  相似文献   

5.
As an important insect immune response, apoptosis plays a critical role in the interaction between baculoviruses and insect hosts. Previous reports have identified inhibitor of apoptosis (IAP) proteins in both insects and baculoviruses, but the relationship between these proteins is still not clearly understood. Here, we found that insect IAP proteins were clustered with baculovirus IAP3, suggesting that the baculovirus iap3 gene might be derived from the Lepidoptera or Diptera. We demonstrated that Bombyx mori inhibitor of apoptosis (Bmiap) gene had an inhibitory effect on apoptosis in silkworm cells. Further analysis of the effects of Bmiap genes on the proliferation of B. mori nucleopolyhedrovirus (BmNPV) showed that both the Bmiap and BmNPV iap genes increased BmNPV proliferation after BmNPV infected silkworm cells. Our results also indicated that BmNPV IAP1 and IAP2 directly interacted with BmIAP in silkworm cells, implying that the Bmiap gene might be hijacked by BmNPV iap genes during BmNPV infection. Taken together, our results provide important insights into the functional relationships of iap genes, and improve our knowledge of apoptosis in baculoviruses and insect hosts.  相似文献   

6.
In vitro and in vivo gene delivery by recombinant baculoviruses   总被引:20,自引:0,他引:20       下载免费PDF全文
Although recombinant baculovirus vectors can be an efficient tool for gene transfer into mammalian cells in vitro, gene transduction in vivo has been hampered by the inactivation of baculoviruses by serum complement. Recombinant baculoviruses possessing excess envelope protein gp64 or other viral envelope proteins on the virion surface deliver foreign genes into a variety of mammalian cell lines more efficiently than the unmodified baculovirus. In this study, we examined the efficiency of gene transfer both in vitro and in vivo by recombinant baculoviruses possessing envelope proteins derived from either vesicular stomatitis virus (VSVG) or rabies virus. These recombinant viruses efficiently transferred reporter genes into neural cell lines, primary rat neural cells, and primary mouse osteal cells in vitro. The VSVG-modified baculovirus exhibited greater resistance to inactivation by animal sera than the unmodified baculovirus. A synthetic inhibitor of the complement activation pathway circumvented the serum inactivation of the unmodified baculovirus. Furthermore, the VSVG-modified baculovirus could transduce a reporter gene into the cerebral cortex and testis of mice by direct inoculation in vivo. These results suggest the possible use of the recombinant baculovirus vectors in combination with the administration of complement inhibitors for in vivo gene therapy.  相似文献   

7.
Viruses including baculoviruses are obligatory parasites, as their genomes do not encode all the proteins required for replication. Therefore, viruses have evolved to exploit the behavior and the physiology of their hosts and often eoevolved with their hosts over millions of years. Recent comparative analyses of complete genome sequences of baculoviruses revealed the patterns of gene acquisitions and losses that have occurred during baculovirus evolution. In addition, knowledge of virus genes has also provided understanding of the mechanism of baculovirus infection including replication, species-specific virulence and host range. The Bm8 gene of Bombyx mori nucleopolyhedrovirus (NPV) and its homologues are found only in group I NPV genomes. The Autographa californica NPV Acl6 gene is a homologue of Bm8 and, encodes a viral structural protein. It has been shown that Bm8/Ac 16 interacts with baculoviral and cellular proteins. Bm8/Ac 16 interacts with baculoviral IE1 that is facilitated by coiled coil domains, and the interaction with IE1 is important for Bin8 function. Ac16 also forms a complex with viral FP25 and cellular actin and associates with membranes via palmitoylation. These data suggested that this gene family encodes a multifunctional protein that accomplishes specific needs of group INPVs.  相似文献   

8.
Ascoviruses, iridoviruses, asfarviruses and poxviruses are all cytoplasmic DNA viruses. The evolutionary origins of cytoplasmic DNA viruses have never been fully addressed. Morphological, genetic and molecular data were used to test if all four cytoplasmic virus families (Ascoviridae, Iridoviridae, Asfarviridae, and Poxvirirdae) evolved from nuclear replicating baculoviruses and how the four virus groups are related. Molecular phylogenetic analyses using DNA polymerase predicted that cytoplasmic DNA viruses might have evolved from nuclear replicating baculoviruses, and that poxviruses and asfarviruses share a common ancestor with iridoviruses. These three cytoplasmic viruses again shared a common ancestor with ascoviruses. Morphological and genetic data predicted the same evolutionary trend as molecular data predicted. A genome sequence comparison showed that ascoviruses have more baculovirus protein homologues than do iridoviruses, which suggested that ascoviruses have evolved from baculoviruses and iridoviruses evolved from ascoviruses. Poxviruses showed genetic and morphological similarity to other cytoplamic viruses, such as ascoviruses, suggesting it has undergone reticulate evolution via hybridization, recombination and lateral gene transfer with other viruses. Within the ascovirus family, we tested if molecular phylogenetic analyses agree with biological inference; that is, ascovirus had an evolutionary trend of increasing genome size, expanding host range and widening tissue tropism for these viruses. Both molecular and biological data predicted this evolutionary trend. The phylogenetic relationship among the four species of ascovirus was predicted to be that TnAV-2 and HvAV-3 shared a common ancestor with SfAV-1 and the three virus species again shared a common ancestor with DpAV-4.   相似文献   

9.
GP64, the major envelope glycoprotein of budded virions of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), is involved in viral attachment, mediates membrane fusion during virus entry, and is required for efficient virion budding. Thus, GP64 is essential for viral propagation in cell culture and in animals. Recent genome sequences from a number of baculoviruses show that only a subset of closely related baculoviruses have gp64 genes, while other baculoviruses have a recently discovered unrelated envelope protein named F. F proteins from Lymantria dispar MNPV (LdMNPV) and Spodoptera exigua MNPV (SeMNPV) mediate membrane fusion and are therefore thought to serve roles similar to that of GP64. To determine whether F proteins are functionally analogous to GP64 proteins, we deleted the gp64 gene from an AcMNPV bacmid and inserted F protein genes from three different baculoviruses. In addition, we also inserted envelope protein genes from vesicular stomatitis virus (VSV) and Thogoto virus. Transfection of the gp64-null bacmid DNA into Sf9 cells does not generate infectious particles, but this defect was rescued by introducing either the F protein gene from LdMNPV or SeMNPV or the G protein gene from VSV. These results demonstrate that baculovirus F proteins are functionally analogous to GP64. Because baculovirus F proteins appear to be more widespread within the family and are much more divergent than GP64 proteins, gp64 may represent the acquisition of an envelope protein gene by an ancestral baculovirus. The AcMNPV pseudotyping system provides an efficient and powerful method for examining the functions and compatibilities of analogous or orthologous viral envelope proteins, and it could have important biotechnological applications.  相似文献   

10.
Anti-apoptotic genes of baculoviruses   总被引:6,自引:0,他引:6  
Baculoviruses possess two different classes of genes with anti-apoptptic activity: p35 and iap. The p35 gene product (P35) is able to block apoptosis induced by a variety of stimuli in phylogenetically diverse organisms. P35 has recently been shown to be capable of inhibiting the ICE/ced-3 family of cysteine proteases, a family of enzymes which are implicated in cell death and which exhibit specificity for cleavage at aspartate residues. The products of the iap genes are a distinct class of proteins containing a carboxyl ring finger and tandem duplications of a unique motif known as the BIR motif. Homologues of the baculovirus iap genes have been identified in the human genome. Both classes of baculovirus anti-apoptotic genes will continue to be important tools in defining the pathways involved in apoptosis. Since our demonstration in 1991 that a baculovirus prevents host cells from undergoing apoptosis by expressing a gene known as p35(Clem et al., 1991), the study of baculovirus-induced apoptosis and the anti-apoptotic genes they possess has led to discoveries with far-reaching implications for viral pathogenesis, human disease, and the study of cell death. It is now known that a variety of eukaryotic viruses encode genes which allow them to control cellular apoptosis. Understanding the mechanism(s) by which these viral gene products act provides fundamental insights into the pathways regulating apoptosis. In this review, we discuss the inhibition of apoptosis by baculoviruses, concentrating mainly on the nature and mechanism of action of the two classes of baculovirus genes, p35 and iap, which are able to control apoptosis in a diversity ofeukaryotes.  相似文献   

11.
The silkworm, Bombyx mori, has been recently demonstrated to contain a bacterial-type chitinase gene (BmChi-h) in addition to a well-characterized endochitinase gene (BmChitinase). The deduced amino acid sequence of BmChi-h showed extensive structural similarities with chitinases from bacteria such as Serratia marcescens chiA and baculoviruses (v-CHIA). Bacterial-type chitinase genes have not been found from any eukaryotes and viruses except for lepidopteran insects and lepidopteran baculoviruses. Thus, it was suggested that BmChi-h may be derived from a bacterial or baculovirus chitinase gene via horizontal gene transfer. In this report, we investigated the biological function of BmChi-h. Our enzymological study indicated that a chitinase encoded by BmChi-h has exo-type substrate preference, which is the same as S. marcescens chiA and v-CHIA, and different from BmChitinase, which has endo-type substrate preference. An immunohistochemical study revealed that BmChi-h localizes in the chitin-containing tissues during the molting stages, indicating that it plays a role in chitin degradation during molting. These results suggest that BmChi-h (exochitinase) and BmChitinase (endochitinase) may catalyze a native chitin by a concerted mechanism. Cloning and comparison of BmChi-h orthologues revealed that bacterial-type chitinase genes are highly conserved among lepidopteran insects, suggesting that the utilization of a bacterial-type chitinase during the molting process may be a general feature of lepidopteran insects.  相似文献   

12.
昆虫杆状病毒是目前已知唯一编码泛素(ubiquitin)的病毒。迄今,已克隆了8种该类病毒的泛素基因。与真核生物Uba52(80)相似,这些基因在一个泛素分子的C末端都有不同长度的融合,其中斜纹夜蛾核多角体病毒(Spodopteralituramulticapsidnucleopolyhedrovirus,SpltMNPV)的ubiquitingp37基因是一个典型的融合基因。近年来,对苜蓿银纹夜蛾核多角体病毒(Autographacaliforniamulticapsidnucleopolyhedrovirus,AcMNPV)泛素的定位与功能研究取得了重要进展 。  相似文献   

13.
14.
Natural protein crystals (polyhedra) armour certain viruses, allowing them to survive for years under hostile conditions. We have determined the structure of polyhedra of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), revealing a highly symmetrical covalently cross‐braced robust lattice, the subunits of which possess a flexible adaptor enabling this supra‐molecular assembly to specifically entrap massive baculoviruses. Inter‐subunit chemical switches modulate the controlled release of virus particles in the unusual high pH environment of the target insect's gut. Surprisingly, the polyhedrin subunits are more similar to picornavirus coat proteins than to the polyhedrin of cytoplasmic polyhedrosis virus (CPV). It is, therefore, remarkable that both AcMNPV and CPV polyhedra possess identical crystal lattices and crystal symmetry. This crystalline arrangement must be particularly well suited to the functional requirements of the polyhedra and has been either preserved or re‐selected during evolution. The use of flexible adaptors to generate a powerful system for packaging irregular particles is characteristic of the AcMNPV polyhedrin and may provide a vehicle to sequester a wide range of objects such as biological nano‐particles.  相似文献   

15.
Ascoviruses, iridoviruses, asfarviruses and poxviruses are all cytoplasmic DNA viruses. The evolutionary origins of cytoplasmic DNA viruses have never been fully addressed. Morphological, genetic and molecular data were used to test if all four cytoplasmic virus families (Ascoviridae, Iridoviridae, Asfarviridae, and Poxvirirdae) evolved from nuclear replicating baculoviruses and how the four virus groups are related. Molecular phylogenetic analyses using DNA polymerase predicted that cytoplasmic DNA viruses might have evolved from nuclear replicating baculoviruses, and that poxviruses and asfarviruses share a common ancestor with iridoviruses. These three cytoplasmic viruses again shared a common ancestor with ascoviruses. Morphological and genetic data predicted the same evolutionary trend as molecular data predicted. A genome sequence comparison showed that ascoviruses have more baculovirus protein homologues than do iridoviruses, which suggested that ascoviruses have evolved from baculoviruses and iridoviruses evolved from ascoviruses. Poxviruses showed genetic and morphological similarity to other cytoplamic viruses, such as ascoviruses, suggesting it has undergone reticulate evolution via hybridization, recombination and lateral gene transfer with other viruses. Within the ascovirus family, we tested if molecular phylogenetic analyses agree with biological inference; that is, ascovirus had an evolutionary trend of increasing genome size, expanding host range and widening tissue tropism for these viruses. Both molecular and biological data predicted this evolutionary trend. The phylogenetic relationship among the four species of ascovirus was predicted to be that TnAV-2 and HvAV-3 shared a common ancestor with SfAV-1 and the three virus species again shared a common ancestor with DpAV-4.  相似文献   

16.
17.
孟庆峰  刘晓勇 《昆虫学报》2013,56(8):925-933
杆状病毒与昆虫宿主相互作用是一种基本的分子和生态问题, 不仅在农业上, 而且在真核表达系统、 基因治疗、 蛋白表面展示 系统以及基因工程疫苗等方面都有重要的实际应用。杆状病毒还是一种很有潜力的病毒杀虫剂, 而且对环境来说是安全的。研究这些相互 作用也产生了许多重要和有价值的发现。杆状病毒生命循环中存在两种不同形式的病毒, 即包埋型病毒粒子(occlusion derived virus, ODV) 和出芽型病毒粒子(budded virus, BV)。ODV包裹于多角体中, 主要负责宿主的原发感染; 而BV由感染的宿主细胞释放后引发继发 感染。病毒侵染起始于敏感的昆虫宿主食用了污染包涵体病毒的植物。在宿主中肠的碱性环境中, 多角体溶解释放ODV, ODV与宿主肠道 柱状上皮细胞细胞膜融合, 通过内吞体进入细胞。之后核衣壳从内吞体中逃脱并被转运到细胞核。病毒转录和复制在细胞核进行, 新生 的BV粒子从基底膜出芽引起全身感染。杆状病毒与宿主细胞相互作用包括从病毒结合和进入时的相互作用, 到宿主基因表达调节, 以及 修饰与调节细胞和机体所发生的生理和防御的相互作用的复杂和微妙的机制。本文主要以杆状病毒侵染昆虫宿主的过程为线索, 总结和评 述了杆状病毒与昆虫宿主相互作用方面研究的最新进展, 特别是杆状病毒基因在病毒入侵过程中所起的作用。  相似文献   

18.
Recombinant baculoviruses have been extensively used as vectors for abundant expression of a large variety of foreign proteins in insect cell cultures. The appeal of the system lies essentially in easy cloning techniques and virus propagation combined with the eukaryotic post-translational modification machinery of the insect cell. Recently, a novel molecular biology tool was established by the development of baculovirus surface display, using different strategies for presentation of foreign peptides and proteins on the surface of budded virions. This eukaryotic display system enables presentation of large complex proteins on the surface of baculovirus particles and has thereby become a versatile system in molecular biology. Surface display strategies play an important role, as they may be used to enhance the efficiency and specificity of viral binding and entry to mammalian cells. In addition, baculovirus surface display vectors have been engineered to contain mammalian promoter elements designed for gene delivery both in vitro and in vivo. Moreover, baculovirus capsid display has recently been developed; this holds promise for intracellular targeting of the viral capsid and subsequent cytosolic delivery of desired protein moieties. Finally, the viruses can accommodate large insertions of foreign DNA and replicate only in insect cells. Together, these are attributes that are very likely to make them important tools in functional genomics and proteomics.  相似文献   

19.
昆虫杆状病毒应用于哺乳动物基因治疗的研究进展   总被引:5,自引:0,他引:5  
杆状病毒是一类宿主特异性的昆虫病毒。昆虫杆状病毒表达系统是一个高效的真核表达系统,被广泛用于在昆虫细胞或昆虫幼虫中生产外源蛋白质。杆状病毒不能感染哺乳动物,却可以进入不同物种和组织来源的多种哺乳动物细胞,并在合适的哺乳动物启动子控制下表达外源基因。杆状病毒在哺乳动物细胞中不能复制,对细胞没有毒性,加上杆状病毒本身具有基因组大、可操作性好等优点,作为哺乳动物基因治疗的载体,将治疗基因传递给哺乳动物细胞已受到了广泛关注。在此就杆状病毒作为基因治疗载体的最新研究进展进行了阐述并探讨其发展趋势。  相似文献   

20.
Baculovirus vectors are an efficient means to deliver genes into hepatocytes in vitro. In experiments that exclude components of the complement system, gene transfer is facilitated. Therefore, the complement system has been defined to represent a potent primary barrier to direct application of baculoviruses in vivo. Here we have genetically manipulated baculoviruses so that the complement-regulatory protein human decay- accelerating factor (DAF) is incorporated into the viral envelope. We found that this modification protected baculovirus vectors against complement-mediated inactivation. Complement-resistant baculovirus vectors were additionally analyzed by immunoblotting and electron microscopy, showing the extent of envelope-incorporated DAF and shape of complement-resistant baculoviruses after exposure to complement. This modified baculovirus vector allowed for an enhanced gene transfer into complement-sufficient neonatal rats in vivo, and thus represents a step in the development of improved alternative viral vectors for gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号