首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toll样受体是一类保守的天然免疫识别受体家族,可识别众多微生物共有的保守模式分子——病原体相关分子模式,通过某些信号转导途径,激发机体先天性及获得性免疫应答,引起炎症介质的释放。数个真菌细胞壁成分可被Toll样受体识别,不同的白细胞介素1受体/Toll样受体超家族成员通过MyD88的相互作用,激活Toll样受体信号转导通路,从而诱导宿主抵抗真菌的攻击。  相似文献   

2.
Toll样受体(Toll-like receptors,TLR)是先天性免疫反应识别病原体的一个重要分子,在免疫系统中发挥关键作用.其家族各种成员的主要功能是识别入侵病原体表面的各种不同分子模式,随后启动免疫反应,达到保护机体作用.在大脑中,小胶质细胞可以作为抗原提呈细胞,参与脑内免疫反应,也可以通过分泌各种促炎症因子启动或促进免疫反应,而TLR家族在中枢神经免疫系统的作用仍存在争议,它既可以通过促进神经免疫反应枢纽因子的表达来增强免疫,也可因免疫过度而损伤神经细胞.总之,Toll信号通路对中枢神经系统疾病有一定的调控作用.  相似文献   

3.
鱼类Toll样受体及其信号传导的研究进展   总被引:6,自引:0,他引:6  
鱼类是脊椎动物中的一个重要类群, 在其生存与进化的过程中, 免疫系统担负着保护鱼类免受病原感染的重任, 其中Toll样受体家族等介导的先天性免疫是鱼类抗病免疫的第一道防线, 并在连接先天性免疫与获得性免疫反应中起着桥梁作用. 虽然从无脊椎动物到高等脊椎动物, Toll样受体家族内多数成员在蛋白质结构与功能上都较为保守, 但是鱼类作为最低等的脊椎动物, 在其进化过程中又形成了一些特有Toll样受体分子, 其剪接类型也更丰富; 鱼类Toll样受体家族介导的免疫识别、免疫信号传导、激活和调控方式与高等脊椎动物也不尽相同. 文章主要综述了鱼类Toll样受体的结构、种类、功能、多样性、免疫信号传导及其调控特点, 为深入了解鱼类的免疫反应奠定基础.    相似文献   

4.
模式识别受体(PRR)在宿主细胞识别与抵御微生物病原体中起到了重要作用。Toll样受体(TLR)是研究比较清楚的一类PRR,可以识别多种病原体成份,启动天然免疫反应。此外,近来发现了几类其他模式识别受体,如C型凝集素受体(CLR),核苷酸寡聚结合域(NOD)样受体(NLR)和视黄酸诱导基因I(RIG—I)样受体(RLR),表明机体的天然免疫反应受到多种机制的精密调控。本文着重综述TLR与其他PRR在识别病原体和介导天然免疫信号通路间的相互关系。  相似文献   

5.
Toll样受体信号转导途径研究进展   总被引:14,自引:0,他引:14  
Toll样受体(Toll-like receptors,TLRs)属于模式识别受体(pattern recognition receptors,PRRs)家族,识别高度保守的微生物组分-病原相关分子模式(pathogen-associated molecular pat-terns,PAMPS)。迄今为止,在人类基因组中已发现10个Toll样受体。这些受体通过感知不同的微生物刺激,招募特异接头蛋白,激活一系列信号级联反应,引发针对病原体的特异性免疫应答,是连接天然免疫和适应性免疫应答的桥梁。哺乳动物Toll样受体的发现引领天然免疫的研究进入飞速发展的时代。本文将对Toll样受体信号转导途径的最新进展作一综述,以便更好地理解Toll样受体介导的分子免疫机制,这将有助于研发免疫治疗的分子靶标,最终有效预防、控制Toll样受体介导的疾病。  相似文献   

6.
Toll-NF-kB信号途径及其介导的功能   总被引:1,自引:0,他引:1  
Toll样受体(Toll-like receptor,TLR)家族是宿主细胞识别各种微生物致病成份的主要受体,NF-kB位于TLR下游信号通路的枢纽位置,当细胞受到生物应激刺激后激活NF-kB,活化的NF-kB进入细胞核调节炎性细胞因子的表达,启动针对病原微生物的固有免疫和获得性免疫。因此,对Toll-NF-kB信号途径的研究将有助于对免疫反应、炎症病理的理解。  相似文献   

7.
Hu CF  Lu DX 《生理科学进展》2006,37(3):233-235
哺乳动物具有两个微生物识别系统,一个系统是由Toll样受体(TLRs)的膜结合受体家族组成;另一个系统是由位于胞浆的核苷酸结合寡聚化结构域(NOD)蛋白家族组成。入侵机体的微生物可能通过不同抗原激活多个模式识别受体,导致免疫反应的产生。本文将对TLRs及NODs信号通路在防御反应中的相互作用进行综述。  相似文献   

8.
宿主细胞依赖固有免疫系统识别入侵的病原微生物,经相关细胞信号转导通路,激活促炎症及抗感染的基因表达。泛素化修饰是细胞内广泛存在的蛋白质翻译后修饰机制,全方位调控宿主细胞防御病原微生物的动态过程:一方面,作为多功能的信号调节分子,在时空上精细调节免疫反应的进程,有效地清除入侵的病原体;另一方面,通过降解关键信号转导分子,限制过度免疫反应,避免造成宿主自体损伤。本文总结了泛素化修饰在Toll样受体信号通路(TLR)、RIG-I样受体信号通路(RLR)和STING介导的信号通路中的新功能,以及相关分子调控机制,并对前沿方向进行展望。  相似文献   

9.
固有免疫系统通过模式识别受体识别病原微生物表面的病原相关分子模式启动固有免疫反应,经级联信号转导,激活下游转录因子NF-κB和干扰素调节因子IRFs,进而产生炎性细胞因子以及Ⅰ型干扰素,抵抗病原微生物感染。TANK结合激酶1 (TANK binding kinase 1,TBK1) 作为一个中心节点蛋白,参与多条固有免疫信号通路的传导,可同时激活NF-κB和IRFs,是机体抗感染过程中关键的蛋白激酶。TBK1的精准调控对维持机体免疫稳态、抵抗病原体入侵至关重要。文中综述了TBK1在固有免疫应答中的作用及其泛素化调控机制,以期为病原体感染及自身免疫病的临床治疗提供理论基础。  相似文献   

10.
Toll样受体(Toll - like receptor,TLR)是在天然免疫与获得性免疫应答中发挥重要作用的模式识别受体(Pattern recognition receptors,PRRs).TLR识别来源于病原体或机体损伤产生的“危险信号”,介导多种炎症因子释放,激发机体对病原体的免疫反应,启动固有免疫并进一步活...  相似文献   

11.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Toll-like receptors (TLRs) recognize Brucella spp. and bacterial components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella infection. TLR2, TLR4 and TLR9 have been implicated in host interactions with Brucella; however, TLR9 has the most prominent role. Further, the relationship between specific Brucella molecules and various signal transduction pathways needs to be better understood. MyD88-dependent and TRIF-independent signaling pathways are involved in Brucella activation of innate immune cells through TLRs. We have recently reported the critical role of MyD88 molecule in dendritic cell maturation and interleukin-12 production during B. abortus infection. This article discusses recent studies on TLR signaling and also highlights the contribution of NOD and type I IFN receptors during Brucella infection. The better understanding of the role by such innate immune receptors in bacterial infection is critical in host-pathogen interactions.  相似文献   

12.
Toll-like receptors are key participants in innate immune responses   总被引:5,自引:0,他引:5  
During an infection, one of the principal challenges for the host is to detect the pathogen and activate a rapid defensive response. The Toll-like family of receptors (TLRs), among other pattern recognition receptors (PRR), performs this detection process in vertebrate and invertebrate organisms. These type I transmembrane receptors identify microbial conserved structures or pathogen-associated molecular patterns (PAMPs). Recognition of microbial components by TLRs initiates signaling transduction pathways that induce gene expression. These gene products regulate innate immune responses and further develop an antigen-specific acquired immunity. TLR signaling pathways are regulated by intracellular adaptor molecules, such as MyD88, TIRAP/Mal, between others that provide specificity of individual TLR- mediated signaling pathways. TLR-mediated activation of innate immunity is involved not only in host defense against pathogens but also in immune disorders. The involvement of TLR-mediated pathways in auto-immune and inflammatory diseases is described in this review article.  相似文献   

13.
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates the innate and adaptive immunity. TLR adaptor molecules play a central role in this cascade; thus, we hypothesized that overexpression of TLR adaptor molecules could mimic infection without any microbial components. Dual-promoter plasmids that carry an antigen and a TLR adaptor molecule such as the Toll-interleukin-1 receptor domain-containing adaptor-inducing beta interferon (TRIF) or myeloid differentiation factor 88 (MyD88) were constructed and administered to mice to determine if these molecules can act as an adjuvant. A DNA vaccine incorporated with the MyD88 genetic adjuvant enhanced antigen-specific humoral immune responses, whereas that with the TRIF genetic adjuvant enhanced cellular immune responses. Incorporating the TRIF genetic adjuvant in a DNA vaccine targeting the influenza HA antigen or the tumor-associated antigen E7 conferred superior protection. These results indicate that TLR adaptor molecules can bridge innate and adaptive immunity and potentiate the effects of DNA vaccines against virus infection and tumors.  相似文献   

14.
Park SJ  Park HJ  Kim SJ  Shin HJ  Min IS  Koh KO  Kim DY  Youn HS 《BMB reports》2011,44(7):468-472
Toll-like receptors (TLRs) are pattern recognition receptors that recognize molecular structures derived from microbes and initiate innate immunity. TLRs have two downstream signaling pathways, the MyD88- and TRIF-dependent pathways. Dysregulated activation of TLRs is closely linked to increased risk of many chronic diseases. Previously, we synthesized fumaryl pyrrolidinone, (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1- yl)-2-butenoate (IPOP), which contains a fumaric acid isopropyl ester and pyrrolidinone, and demonstrated that it inhibits the activation of nuclear factor kappa B by inhibiting the MyD88-dependent pathway of TLRs. However, the effect of IPOP on the TRIF-dependent pathway remains unknown. Here, we report the effect of IPOP on signal transduction via the TRIF-dependent pathway of TLRs. IPOP inhibited lipopolysaccharide- or polyinosinic-polycytidylic acid-induced interferon regulatory factor 3 activation, as well as interferon- inducible genes such as interferon inducible protein-10. These results suggest that IPOP can modulate the TRIF-dependent signaling pathway of TLRs, leading to decreased inflammatory gene expression.  相似文献   

15.
Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-dependent downstream signaling pathways. Isoliquiritigen in (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-κB kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-κB and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.  相似文献   

16.
Myeloid differentiation factor 88 (MyD88) is an adapter molecule required for signal transduction via Toll-like receptors (TLRs) and receptors of the IL-1 family. Consequently, MyD88-deficient mice are highly susceptible to bacterial infections, including systemic infection with Staphylococcus aureus. To determine the role of MyD88 in innate immunity to bacterial pneumonia, we exposed MyD88-deficient and wild-type mice to aerosolized Pseudomonas aeruginosa or S. aureus. As predicted, MyD88-deficient mice failed to mount an early cytokine or inflammatory response or to control bacterial replication after infection with P. aeruginosa, which resulted in necrotizing pneumonia and death. By contrast, MyD88-deficient mice controlled S. aureus infection despite blunted local cytokine and inflammatory responses. Thus, whereas MyD88-dependent signaling is integral to the initiation of cytokine and inflammatory responses to both pathogens following infection of the lower respiratory tract, MyD88 is essential for innate immunity to P. aeruginosa but not S. aureus.  相似文献   

17.
18.
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates innate and adaptive immunity. Recent studies have shown that the activation of TLR-dependent signaling pathways plays important roles in the pathogenesis of ischemia-reperfusion (I/R) injuries in many organs. All TLRs, except TLR3, use a common adaptor protein, MyD88, to transduce activation signals. We investigated the role of MyD88 in I/R injury of the small intestine. MyD88 and cyclooxygenase-2 (COX-2) knockout and wild-type mice were subjected to intestinal I/R injury. I/R-induced small intestinal injury was characterized by infiltration of inflammatory cells, disruption of the mucosal epithelium, destruction of villi, and increases in myeloperoxidase activity and mRNA levels of TNF-α and the IL-8 homolog KC. MyD88 deficiency worsened the severity of I/R injury, as assessed using the histological grading system, measuring luminal contents of hemoglobin (a marker of intestinal bleeding), and counting apoptotic epithelial cells, while it inhibited the increase in mRNA expression of TNF-α and KC. I/R significantly enhanced COX-2 expression and increased PGE(2) concentration in the small intestine of wild-type mice, which were markedly inhibited by MyD88 deficiency. COX-2 knockout mice were also highly susceptible to intestinal I/R injury. Exogenous PGE(2) reduced the severity of injury in both MyD88 and COX-2 knockout mice to the level of wild-type mice. These findings suggest that the MyD88 signaling pathway may inhibit I/R injury in the small intestine by inducing COX-2 expression.  相似文献   

19.
Respiratory syncytial virus (RSV) is the leading cause of respiratory disease in infants worldwide. The induction of innate immunity and the establishment of adaptive immune responses are influenced by the recognition of pathogen-associated molecular patterns by TLRs. One of the primary pathways for TLR activation is by MyD88 adapter protein signaling. The present studies indicate that MyD88 deficiency profoundly impacts the pulmonary environment in RSV-infected mice characterized by the accumulation of eosinophils and augmented mucus production. Although there was little difference in CD4 T cell accumulation, there was also a significant decrease in conventional dendritic cells recruitment to the lungs of MyD88(-/-) mice. The exacerbation of RSV pathophysiology in MyD88(-/-) mice was associated with an enhanced Th2 cytokine profile that contributed to an inappropriate immune response. Furthermore, bone marrow-derived dendritic cells (BMDC) isolated from MyD88(-/-) mice were incapable of producing two important Th1 instructive signals, IL-12 and delta-like4, upon RSV infection. Although MyD88(-/-) BMDCs infected with RSV did up-regulate costimulatory molecules, they did not up-regulate class II as efficiently and stimulated less IFN-gamma from CD4(+) T cells in vitro compared with wild-type BMDCs. Finally, adoptive transfer of C57BL/6 BMDCs into MyD88(-/-) mice reconstituted Th1 immune responses in vivo, whereas transfer of MyD88(-/-) BMDCs into wild-type mice skewed the RSV responses toward a Th2 phenotype. Taken together, our data indicate that MyD88-mediated pathways are essential for the least pathogenic responses to this viral pathogen through the regulation of important Th1-associated instructive signals.  相似文献   

20.
Liu HZ  Yang HZ  Hu ZW 《生理科学进展》2008,39(2):114-118
Toll样受体(TLRs)广泛表达于固有免疫和获得性免疫系统.它们通过识别内外源性致病原含有的保守病原体相关模式分子,启动宿主防卫反应.TLRs也是沟通固有免疫和获得性免疫反应,尤其是T细胞介导的细胞免疫反应的重要桥梁.新近研究表明,几乎所有亚型TLR均表达在B淋巴细胞,不仅参与B细胞增殖、成熟和功能调节,而且在系统性红斑狼疮和慢性淋巴细胞白血病等疾病发生过程中发挥重要调节作用.以TLRs为靶点,调节B细胞介导的免疫反应,可能成为具有崭新应用前景的免疫治疗途径和方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号