首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   12篇
  2019年   1篇
  2017年   3篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   9篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   8篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   5篇
  1971年   1篇
  1969年   2篇
  1954年   1篇
  1926年   1篇
  1913年   1篇
  1911年   1篇
  1909年   1篇
  1907年   1篇
排序方式: 共有100条查询结果,搜索用时 206 毫秒
1.
In a variety of tumour systems, individuals carrying progressively growing neoplasms have lymphoid cells with a specific cytotoxic effect on cultured tumour cells from the same individual1–4. Since the sera of tumour-bearing individuals have been shown to prevent tumour cell destruction by immune lymphocytes in vitro2,5–8 and since this serum blocking activity appears early in primary and transplant tumour development5,7, it has been suggested that the appearance of this serum blocking activity might be responsible for the progressive growth of tumours in individuals having cytotoxic lymphocytes. Counteraction of this blocking activity would thus be of primary importance in facilitating the function of an already existing or bolstered cell-mediated immunity. The serum blocking activity might be inhibited in various ways, by preventing the formation of blocking antibody or by interfering with its action (“unblocking”), as demonstrated in Moloney sarcoma regressor sera9. This type of serum also has a therapeutic effect on Moloney sarcomas in vivo10,11, which has been tentatively attributed to its unblocking activity8,9 or, possibly, to a complement-dependent cytotoxicity10. Tumour growth in the Moloney sarcoma system, however, might be due in part to continuous recruitment of neoplastic cells by virus-induced transformation and so the therapeutic effect could be due to a virus-neutralizing serum activity9,10.  相似文献   
2.
M. Skerrett  S. D. Tyerman 《Planta》1994,192(3):295-305
An anion channel that only allows outward current flow (anion influx) has been identified in protoplasts derived from wheat (Triticum aestivum L., Triticum turgidum L.) roots. The anion outward rectifier (anion OR) measured by patch-clamp of whole cells activated very quickly, usually reaching a steady-state level in less than 100 ms and was easily distinguished from the cation outward rectifier (cation OR) which activated more slowly during membrane depolarisation. The anion OR is permeable to NO 3 and Cl, moderately permeable to I, and relatively impermeable to H2PO4/ and ClO4/. An anomalous mole-fraction effect between ClO4/ and Cl was observed on the outward current, indicating that the channel is a multi-ion pore. The anion OR is gated by both voltage and external anion concentration such that it activates near to the equilibrium potential for the permeant anion. It activated at more negative membrane potentials when NO 3 was substituted for Cl in the external medium, indicating that the channel may function to allow NO 3 influx under luxuriant external NO 3 concentrations. For most experiments, K+ and Cl were the main cation and anion in solution, and under these conditions it appeared likely that the anion OR functioned in membrane-potential regulation by facilitating a Cl influx at membrane potentials more positive than the chloride reversal potential (ECl). If ECl was more negative than the K+ reversal potential (EK) then the anion OR dominated but both the anion and cation ORs occurred together when the membrane potential difference (Vm) was positive of both ECl and EK. The cation OR was inhibited by increasing external Cl concentrations, but the anion OR was not affected by external K+ or Na+ concentration. The anion-transport inhibitors, zinc and phenylglyoxal were ineffective in blocking the anion OR. 4,4-Di-isothiocyanostilbene-2, 2-disulfonic acid (DIDS) irreversibly blocked about 34% of the current when applied extracellularly at a concentration of 25 M, and about 69% at a concentration of 200 M. However, DIDS (200 M) also occasionally acted as an irreversible blocker of the cation OR. Perchlorate blocked irreversibly 75% of the current at an external concentration of 10 mM and did not block the cation OR. Whole-cell currents also indicated that the anion OR was insensitive to external pH (pH=5–7) and calcium concentration ([Ca2+]=0.1–10 mM). Increasing intracellular calcium concentration significantly increased the occurrence of the fast outward current in whole cells (P < 0.005, X2 test). With approximately 10 nM calcium inside the cell the anion outward current was observed in 64% (n = 45) of cells and with 50 nM calcium inside the cell the anion current was observed in 88% (n = 69) of cells. Single-anion OR channels observed in outside-out patches had a conductance in 300 mM KCl (external) of about 4 pS. When voltage pulses were applied to outside-out patches the average currents were similar to those observed in whole cells. The significance of the anion OR as a likely route for Cl uptake in high salinities is discussed.Abbreviations Bath solution bathing the extracellular face of the membrane - DIDS (4,4-diisothiocyanostilbene-2,2-disulfonic acid) - Ex reversal potential for ion x - OR outward rectifier - Pip solution inside the pipette - TEACl (tetraethyl-ammonium chloride) - Vm membrane potential difference We thank the Australian Research Council for financial support, G.P. Findlay and A. Garrill for helpful discussions, and K. Morris and D. Mackenzie for expert technical assistance. M.S. was supported by an Australian Postgraduate Research Award.  相似文献   
3.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   
4.
Cytosols from 7, 12-dimethylbenz (alpha) anthracene-induced rat mammary tumors which exhibit different hormone-responsiveness were compared with respect to their cAMP-dissociation kinetics. At 22 degree C, pH 4.5, 1 micrometer cAMP, hormone-dependent mammary tumors exhibited monophasic dissociation rates with a rate constant of k-1 = 0.06 min-1. In contrast, hormone-independent mammary tumors exhibited biphasic dissociation curves with rate constants of k-1 = 0.47 and k-2 = 0.06 min-1. The binding of cAMP was completely reversible; radio-labeled ligand was completely dissociated by 1mM nonradioactive cAMP; the binding protein could be reassociated to its original binding level after dextran-coated charcoal adsorption. The mammary cytosols exhibited specific binding for cAMP which could be displaced partially by cGMP but not by ATP, ADP, AMP, or adenosine. Receptor inactivation during the course of incubation was negligible. Both mammary tissue cytosols exhibited similar association rates at 22 degree C, pH 4.5, 1 micrometer cAMP (k+1 = 5-7 x 10(5)M-1 min-1). These data indicate that mammary tissues exhibit 2 cAMP dissociation rates. Hormone-dependent mammary tumors exhibit a dissociation constant of a high affinity binding site (k-1/k+1 = 0.07 micrometer) whereas hormone-independent mammary tumors exhibit dissociation constants of one high affinity (k-1/k+1 = 0.07 micrometer) and a second low affinity site (k-1/k+1 = 0.05 micrometer).  相似文献   
5.
Alveolar macrophage activation in experimental legionellosis.   总被引:11,自引:0,他引:11  
Legionella pneumophila is a facultative intracellular parasite of alveolar macrophages. In vitro studies have shown that lymphokine-activated mononuclear phagocytes inhibit intracellular replication of L. pneumophila. To determine if recovery from legionellosis is associated with activation of alveolar macrophages in vivo to resist L. pneumophila, we studied an animal model of Legionnaires' disease. Rats were exposed to aerosolized L. pneumophila and alveolar macrophages were harvested during the recovery phase of infection. We compared these alveolar exudate macrophages with normal resident alveolar macrophages for the capacity to support or inhibit the intracellular growth of L. pneumophila. We also measured Ia expression as a marker of immunologic activation, and studied binding of bacteria, superoxide release, and the expression of transferrin receptors as potential mechanisms of resistance to L. pneumophila. For perspective on the specificity of these responses, we also studied alveolar exudate cells elicited by inhalation of heat-killed L. pneumophila, live Listeria monocytogenes, and live Escherichia coli. We found that alveolar exudate macrophages elicited by live L. pneumophila, but not heat-killed L. pneumophila, resisted the intracellular growth of L. pneumophila. Exudate macrophages in resolving legionellosis exhibited increased Ia expression, diminished superoxide production, and downregulation of transferrin receptors. Binding of L. pneumophila to exudate macrophages was indistinguishable from that to resident macrophages in the presence of normal serum, and augmented in the presence of immune serum. Alveolar exudate macrophages elicited by E. coli also inhibited growth of L. pneumophila, and exhibited a modest increase in Ia expression without change in transferrin receptors. Exudate cells induced by L. monocytogenes exhibited up-regulation of Ia without diminution of superoxide release. Alveolar cells harvested after inhalation of heat-killed L. pneumophila did not differ from resident alveolar macrophages in the expression of surface markers. These findings suggest that alveolar macrophages are immunologically activated in vivo to serve as effector cells in resolving legionellosis, and that live bacteria are required to induce this expression of immunity. The mechanism of resistance to parasitism by L. pneumophila may entail restriction of the intracellular availability of iron, but does not involve diminished bacterial binding or an augmented respiratory burst.  相似文献   
6.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
7.
8.
9.
10.
In developing bean (Phaseolus vulgaris) seeds, phloem-imported nutrients move in the symplast from sieve elements to the ground parenchyma cells where they are transported across the plasma membrane into the seed apoplast. To study the mechanisms underlying this transport, channel currents in ground parenchyma protoplasts were characterized using patch clamp. A fast-activating outward current was found in all protoplasts, whereas a slowly activating outward current was observed in approximately 25% of protoplasts. The two currents had low selectivity for univalent cations, but the slow current was more selective for K(+) over Cl(-) (P(K):P(Cl) = 3.6-4.2) than the fast current (P(K):P(Cl) = 1.8-2.5) and also displayed Ca(2+) selectivity. The slow current was blocked by Ba(2+), whereas both currents were blocked by Gd(3+) and La(3+). Efflux of K(+) from seed coat halves was inhibited 25% by Gd(3+) and La(3+) but was stimulated by Ba(2+) and Cs(+), suggesting that only the fast current may be a component in the pathway for K(+) release. An "instantaneous" inward current observed in all protoplasts exhibited similar pharmacology and permeability for univalent cations to the fast outward current. In outside-out patches, two classes of depolarization-activated cation-selective channels were observed: one slowly activating of low conductance (determined from nonstationary noise to be 2.4 pS) and another with conductances 10-fold higher. Both channels occurred at high density. The higher conductance channel in 10 mM KCl had P(K):P(Cl) = 2.8. Such nonselective channels in the seed coat ground parenchyma cell could function to allow some of the efflux of phloem-imported univalent ions into the seed apoplast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号