首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
The current gold standard method for methylome analysis is whole-genome bisulfite sequencing (WGBS), but its cost is substantial, especially for the purpose of multi-sample comparison of large methylomes. Shotgun bisulfite sequencing of target-enriched DNA, or targeted methylome sequencing (TMS), can be a flexible, cost-effective alternative to WGBS. However, the current TMS protocol requires a considerable amount of input DNA and hence is hardly applicable to samples of limited quantity. Here we report a method to overcome this limitation by using post-bisulfite adaptor tagging (PBAT), in which adaptor tagging is conducted after bisulfite treatment to circumvent bisulfite-induced loss of intact sequencing templates, thereby enabling TMS of a 100-fold smaller amount of input DNA with far fewer cycles of polymerase chain reaction than in the current protocol. We thus expect that the PBAT-mediated TMS will serve as an invaluable method in epigenomics.  相似文献   

3.
4.
Reduced representation bisulfite sequencing (RRBS) has been used to profile DNA methylation patterns in mammalian genomes such as human, mouse and rat. The methylome of the zebrafish, an important animal model, has not yet been characterized at base-pair resolution using RRBS. Therefore, we evaluated the technique of RRBS in this model organism by generating four single-nucleotide resolution DNA methylomes of adult zebrafish brain. We performed several simulations to show the distribution of fragments and enrichment of CpGs in different in silico reduced representation genomes of zebrafish. Four RRBS brain libraries generated 98 million sequenced reads and had higher frequencies of multiple mapping than equivalent human RRBS libraries. The zebrafish methylome indicates there is higher global DNA methylation in the zebrafish genome compared with its equivalent human methylome. This observation was confirmed by RRBS of zebrafish liver. High coverage CpG dinucleotides are enriched in CpG island shores more than in the CpG island core. We found that 45% of the mapped CpGs reside in gene bodies, and 7% in gene promoters. This analysis provides a roadmap for generating reproducible base-pair level methylomes for zebrafish using RRBS and our results provide the first evidence that RRBS is a suitable technique for global methylation analysis in zebrafish.  相似文献   

5.
DNA methylation is an indispensible epigenetic modification required for regulating the expression of mammalian genomes. Immunoprecipitation-based methods for DNA methylome analysis are rapidly shifting the bottleneck in this field from data generation to data analysis, necessitating the development of better analytical tools. In particular, an inability to estimate absolute methylation levels remains a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling. To address this issue, we developed a cross-platform algorithm-Bayesian tool for methylation analysis (Batman)-for analyzing methylated DNA immunoprecipitation (MeDIP) profiles generated using oligonucleotide arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). We developed the latter approach to provide a high-resolution whole-genome DNA methylation profile (DNA methylome) of a mammalian genome. Strong correlation of our data, obtained using mature human spermatozoa, with those obtained using bisulfite sequencing suggest that combining MeDIP-seq or MeDIP-chip with Batman provides a robust, quantitative and cost-effective functional genomic strategy for elucidating the function of DNA methylation.  相似文献   

6.
DNA methylation plays a key role in epigenetic regulation of eukaryotic genomes. Hence the genome-wide distribution of 5-methylcytosine, or the methylome, has been attracting intense attention. In recent years, whole-genome bisulfite sequencing (WGBS) has enabled methylome analysis at single-base resolution. However, WGBS typically requires microgram quantities of DNA as well as global PCR amplification, thereby precluding its application to samples of limited amounts. This is presumably because bisulfite treatment of adaptor-tagged templates, which is inherent to current WGBS methods, leads to substantial DNA fragmentation. To circumvent the bisulfite-induced loss of intact sequencing templates, we conceived an alternative method termed Post-Bisulfite Adaptor Tagging (PBAT) wherein bisulfite treatment precedes adaptor tagging by two rounds of random primer extension. The PBAT method can generate a substantial number of unamplified reads from as little as subnanogram quantities of DNA. It requires only 100 ng of DNA for amplification-free WGBS of mammalian genomes. Thus, the PBAT method will enable various novel applications that would not otherwise be possible, thereby contributing to the rapidly growing field of epigenomics.  相似文献   

7.
We have developed a new generation of genome-wide DNA methylation BeadChip which allows high-throughput methylation profiling of the human genome. The new high density BeadChip can assay over 480K CpG sites and analyze twelve samples in parallel. The innovative content includes coverage of 99% of RefSeq genes with multiple probes per gene, 96% of CpG islands from the UCSC database, CpG island shores and additional content selected from whole-genome bisulfite sequencing data and input from DNA methylation experts. The well-characterized Infinium® Assay is used for analysis of CpG methylation using bisulfite-converted genomic DNA. We applied this technology to analyze DNA methylation in normal and tumor DNA samples and compared results with whole-genome bisulfite sequencing (WGBS) data obtained for the same samples. Highly comparable DNA methylation profiles were generated by the array and sequencing methods (average R2 of 0.95). The ability to determine genome-wide methylation patterns will rapidly advance methylation research.  相似文献   

8.

Background

Recent progress in high-throughput technologies has greatly contributed to the development of DNA methylation profiling. Although there are several reports that describe methylome detection of whole genome bisulfite sequencing, the high cost and heavy demand on bioinformatics analysis prevents its extensive application. Thus, current strategies for the study of mammalian DNA methylomes is still based primarily on genome-wide methylated DNA enrichment combined with DNA microarray detection or sequencing. Methylated DNA enrichment is a key step in a microarray based genome-wide methylation profiling study, and even for future high-throughput sequencing based methylome analysis.

Results

In order to evaluate the sensitivity and accuracy of methylated DNA enrichment, we investigated and optimized a number of important parameters to improve the performance of several enrichment assays, including differential methylation hybridization (DMH), microarray-based methylation assessment of single samples (MMASS), and methylated DNA immunoprecipitation (MeDIP). With advantages and disadvantages unique to each approach, we found that assays based on methylation-sensitive enzyme digestion and those based on immunoprecipitation detected different methylated DNA fragments, indicating that they are complementary in their relative ability to detect methylation differences.

Conclusions

Our study provides the first comprehensive evaluation for widely used methodologies for methylated DNA enrichment, and could be helpful for developing a cost effective approach for DNA methylation profiling.  相似文献   

9.
10.
BackgroundCirculating cell-free fetal DNA has enabled non-invasive prenatal fetal aneuploidy testing without direct discrimination of the maternal and fetal DNA. Testing may be improved by specifically enriching the sample material for fetal DNA. DNA methylation may allow for such a separation of DNA; however, this depends on knowledge of the methylomes of circulating cell-free DNA and its cellular contributors.ResultsWe perform whole genome bisulfite sequencing on a set of unmatched samples including circulating cell-free DNA from non-pregnant and pregnant female donors and genomic DNA from maternal buffy coat and placenta samples. We find CpG cytosines within longer fragments are more likely to be methylated. Comparison of the methylomes of placenta and non-pregnant circulating cell-free DNA reveal many of the 51,259 identified differentially methylated regions are located in domains exhibiting consistent placenta hypomethylation across millions of consecutive bases. We find these placenta hypomethylated domains are consistently located within regions exhibiting low CpG and gene density. Differentially methylated regions identified when comparing placenta to non-pregnant circulating cell-free DNA are recapitulated in pregnant circulating cell-free DNA, confirming the ability to detect differential methylation in circulating cell-free DNA mixtures.ConclusionsWe generate methylome maps for four sample types at single-base resolution, identify a link between DNA methylation and fragment length in circulating cell-free DNA, identify differentially methylated regions between sample groups, and uncover the presence of megabase-size placenta hypomethylated domains.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0645-x) contains supplementary material, which is available to authorized users.  相似文献   

11.
DNA methylation plays a central role in regulating many aspects of growth and development in mammals through regulating gene expression. The development of next generation sequencing technologies have paved the way for genome-wide, high resolution analysis of DNA methylation landscapes using methodology known as reduced representation bisulfite sequencing (RRBS). While RRBS has proven to be effective in understanding DNA methylation landscapes in humans, mice, and rats, to date, few studies have utilised this powerful method for investigating DNA methylation in agricultural animals. Here we describe the utilisation of RRBS to investigate DNA methylation in sheep Longissimus dorsi muscles. RRBS analysis of ∼1% of the genome from Longissimus dorsi muscles provided data of suitably high precision and accuracy for DNA methylation analysis, at all levels of resolution from genome-wide to individual nucleotides. Combining RRBS data with mRNAseq data allowed the sheep Longissimus dorsi muscle methylome to be compared with methylomes from other species. While some species differences were identified, many similarities were observed between DNA methylation patterns in sheep and other more commonly studied species. The RRBS data presented here highlights the complexity of epigenetic regulation of genes. However, the similarities observed across species are promising, in that knowledge gained from epigenetic studies in human and mice may be applied, with caution, to agricultural species. The ability to accurately measure DNA methylation in agricultural animals will contribute an additional layer of information to the genetic analyses currently being used to maximise production gains in these species.  相似文献   

12.

Background

Base-resolution methylome data generated by whole-genome bisulfite sequencing (WGBS) is often used to segment the genome into domains with distinct methylation levels. However, most segmentation methods include many parameters to be carefully tuned and/or fail to exploit the unsurpassed resolution of the data. Furthermore, there is no simple method that displays the composition of the domains to grasp global trends in each methylome.

Results

We propose to use changepoint detection for domain demarcation based on base-resolution methylome data. While the proposed method segments the methylome in a largely comparable manner to conventional approaches, it has only a single parameter to be tuned. Furthermore, it fully exploits the base-resolution of the data to enable simultaneous detection of methylation changes in even contrasting size ranges, such as focal hypermethylation and global hypomethylation in cancer methylomes. We also propose a simple plot termed methylated domain landscape (MDL) that globally displays the size, the methylation level and the number of the domains thus defined, thereby enabling one to intuitively grasp trends in each methylome. Since the pattern of MDL often reflects cell lineages and is largely unaffected by data size, it can serve as a novel signature of methylome.

Conclusions

Changepoint detection in base-resolution methylome data followed by MDL plotting provides a novel method for methylome characterization and will facilitate global comparison among various WGBS data differing in size and even species origin.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1809-5) contains supplementary material, which is available to authorized users.  相似文献   

13.
We investigated DNA methylomes of pediatric B-cell acute lymphoblastic leukemias (B-ALLs) using whole-genome bisulfite sequencing and high-definition microarrays, along with RNA expression profiles. Epigenetic alteration of B-ALLs occurred in two tracks: de novo methylation of small functional compartments and demethylation of large inter-compartmental backbones. The deviations were exaggerated in lamina-associated domains, with differences corresponding to methylation clusters and/or cytogenetic groups. Our data also suggested a pivotal role of polycomb and CTBP2 in de novo methylation, which may be traced back to bivalency status of embryonic stem cells. Driven by these potent epigenetic modulations, suppression of polycomb target genes was observed along with disruption of developmental fate and cell cycle and mismatch repair pathways and altered activities of key upstream regulators.  相似文献   

14.
The ability to assay genome-scale methylation patterns using high-throughput sequencing makes it possible to carry out association studies to determine the relationship between epigenetic variation and phenotype. While bisulfite sequencing can determine a methylome at high resolution, cost inhibits its use in comparative and population studies. MethylSeq, based on sequencing of fragment ends produced by a methylation-sensitive restriction enzyme, is a method for methyltyping (survey of methylation states) and is a site-specific and cost-effective alternative to whole-genome bisulfite sequencing. Despite its advantages, the use of MethylSeq has been restricted by biases in MethylSeq data that complicate the determination of methyltypes. Here we introduce a statistical method, MetMap, that produces corrected site-specific methylation states from MethylSeq experiments and annotates unmethylated islands across the genome. MetMap integrates genome sequence information with experimental data, in a statistically sound and cohesive Bayesian Network. It infers the extent of methylation at individual CGs and across regions, and serves as a framework for comparative methylation analysis within and among species. We validated MetMap''s inferences with direct bisulfite sequencing, showing that the methylation status of sites and islands is accurately inferred. We used MetMap to analyze MethylSeq data from four human neutrophil samples, identifying novel, highly unmethylated islands that are invisible to sequence-based annotation strategies. The combination of MethylSeq and MetMap is a powerful and cost-effective tool for determining genome-scale methyltypes suitable for comparative and association studies.  相似文献   

15.
Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.  相似文献   

16.
DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana.  相似文献   

17.
Deep sequencing after bisulfite conversion (BS-Seq) is the method of choice to generate whole genome maps of cytosine methylation at single base-pair resolution. Its application to genomic DNA of Arabidopsis flower bud tissue resulted in the first complete methylome, determining a methylation rate of 6.7% in this tissue. BS-Seq reads were mapped onto an in silico converted reference genome, applying the so-called 3-letter genome method. Here, we present BiSS (Bisufite Sequencing Scorer), a new method applying Smith-Waterman alignment to map bisulfite-converted reads to a reference genome. In addition, we introduce a comprehensive adaptive error estimate that accounts for sequencing errors, erroneous bisulfite conversion and also wrongly mapped reads. The re-analysis of the Arabidopsis methylome data with BiSS mapped substantially more reads to the genome. As a result, it determines the methylation status of an extra 10% of cytosines and estimates the methylation rate to be 7.7%. We validated the results by individual traditional bisulfite sequencing for selected genomic regions. In addition to predicting the methylation status of each cytosine, BiSS also provides an estimate of the methylation degree at each genomic site. Thus, BiSS explores BS-Seq data more extensively and provides more information for downstream analysis.  相似文献   

18.
Bisulfite sequencing is a valuable tool for mapping the position of 5-methylcytosine in the genome at single base resolution. However, the associated chemical treatment causes strand scission, which depletes the number of sequenceable DNA fragments in a library and thus necessitates PCR amplification. The AT-rich nature of the library generated from bisulfite treatment adversely affects this amplification, resulting in the introduction of major biases that can confound methylation analysis. Here, we report a method that enables more accurate methylation analysis, by rebuilding bisulfite-damaged components of a DNA library. This recovery after bisulfite treatment (ReBuilT) approach enables PCR-free bisulfite sequencing from low nanogram quantities of genomic DNA. We apply the ReBuilT method for the first whole methylome analysis of the highly AT-rich genome of Plasmodium berghei. Side-by-side comparison to a commercial protocol involving amplification demonstrates a substantial improvement in uniformity of coverage and reduction of sequence context bias. Our method will be widely applicable for quantitative methylation analysis, even for technically challenging genomes, and where limited sample DNA is available.  相似文献   

19.
Proper reprogramming of parental DNA methylomes is essential for mammalian embryonic development.However,it is unknown whether abnormal methylome reprogramming occurs and is associated with the failure of embryonic development.Here we analyzed the DNA methylomes of 57 blastocysts and 29 trophectoderm samples with different morphological grades during assisted reproductive technology(ART) practices.Our data reveal that the global methylation levels of high-quality blastocysts are similar(0.30 ± 0.02,mean ± SD).while the methylation levels of low-quality blastocysts are divergent and away from those of high-quality blastocysts.The proportion of blastocysts with a methylation level falling within the range of 0.30 ± 0.02 in different grades correlates with the live birth rate for that grade.Moreover,abnormal methylated regions are associated with the failure of embryonic development.Furthermore,we can use the methylation data of cells biopsied from trophectoderm to predict the blastocyst methylation level as well as to detect the aneuploidy of the blastocysts.Our data indicate that global abnormal methylome reprogramming often occurs in human embryos,and suggest that DNA methylome is a potential biomarker in blastocyst selection in ART.  相似文献   

20.

A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405T, where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA transformation is restriction–modification systems, which defend against foreign DNA methylated differently than the host. To determine the active restriction–modification systems in this strain, we performed complete methylome analysis via single-molecule, real-time sequencing to detect 6-methyladenine and 4-methylcytosine and the rarely used whole-genome bisulfite sequencing to detect 5-methylcytosine. Multiple active systems were identified, and corresponding DNA methyltransferases were expressed from the Escherichia coli chromosome to mimic the C. thermocellum methylome. Plasmid methylation was experimentally validated and successfully electroporated into C. thermocellum ATCC 27405. This combined approach enabled genetic modification of the C. thermocellum-type strain and acts as a blueprint for transformation of other non-model microorganisms.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号