首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
药物基因组学对癌症化疗的启示   总被引:1,自引:0,他引:1  
药物基因组学的研究任务是阐明个体差异的遗传基础,并利用这些遗传信息来预测药物的疗效、毒性和安全性。绝大多数的癌症化疗药物在治疗效果及正常组织毒性上的个体差异一直广为关注。不仅诸多临床因素(如年龄、性别、饮食、药物相互作用等)与药物反应和治疗效果有关,而且药物分布(转运和代谢)和药物靶标的遗传变异同样可导致癌症治疗上的差异。本篇综述主要讨论当前和将来药物基因组学在临床癌症治疗和抗癌药物研制方面的应用。  相似文献   

2.
近年来,中国 2 型糖尿病(T2DM)发病率呈快速增长趋势。T2DM 是一种慢性代谢性疾病,涉及全身各个系统,甚至可能引起严 重的并发症。大多数 T2DM 患者需长期口服降糖药物。口服降糖药的药物基因组学研究可指导个体化治疗,改善疗效,降低用药成本,减 少不良反应和并发症风险,已成为当前研究的热点。综述常用口服降糖药药效学和药代动力学参数的相关基因多态性研究进展,为更加合理、 有效地进行糖尿病临床个体化治疗提供参考。  相似文献   

3.
细胞色素P450(cytochrome P450,CYP450)在人体药物代谢过程中起着非常重要的作用并参与代谢80%以上的临床药物。由于CYP450在不同种族和不同人群中存在基因多态性,从而造成药物反应的个体差异,一度成为药物基因组学研究的热点。通过查阅国外相关文献,综述了近年来关于CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4五种主要的药物代谢酶的基因多态性和药物代谢的研究进展,为临床指导个体化用药、避免药物不良反应和新药研发提供科学参考依据。  相似文献   

4.
药物基因组学   总被引:5,自引:0,他引:5  
目前,临床上最常见的一个现象就是不同的病人对同一种药物有不同的反应,这一直是困扰临床治疗的一个重大问题。近几年来,人们发现这些差异大多源于基因差异,基于此,有人提出“药物基因组学”的概念,它主要研究病人对药物的反应是如何受其基因影响的,以解决为什么不同的病人对同一种药物有不同反应的临床难题。基因多态性是药物基因组学的分子基础。影响药物作用的遗传差异的发现将导致新的诊断程序和治疗产品的开发,从而可以有选择地给病人用药,做到既有效又安全。1.药物基因组学的诞生早在50年代,人们就已经发现不同的遗传背景会导致药物反…  相似文献   

5.
肿瘤组织异种移植(PDX)模型在遗传学、病理学和生物学特性等方面与患者的原发肿瘤具有较好的相似性,药物临床反应一致性高,在肿瘤个体化治疗领域显示出良好的应用前景。利用PDX模型开展肿瘤靶向药物筛选可有效指导临床用药。本文针对用于化疗药物筛选的PDX模型评价策略进行综述,总结了建模标准和质量控制要求,提出组织形态学、测序分析、特异性标志物和STR检测四种模型溯源性评价方法,综合衡量药物毒性作用、肿瘤体积变化趋势和TGD数学模型结果进行疗效评价,为PDX模型指导肿瘤个体化治疗提供良好的应用策略。  相似文献   

6.
风湿病的传统治疗以激素和甲氨蝶呤为代表的改善病情药物为主,随着分子水平研究的深入,以肿瘤坏死因子α阻断剂为代表的多种靶向生物制剂进入临床。药物的选择性治疗必须依靠基因组及药物遗传学的研究,对不同患者疗效及药物毒副反应作个体化的分析,从而正确的选择药物。本文就风湿病的传统的甲氨蝶呤和TNF-α阻断剂在药物基因组学预测药物的疗效及副作用等进行综述。  相似文献   

7.
基因组解析与新药开发   总被引:3,自引:0,他引:3  
由于DNA微阵列技术 ,基因表达的解析已成为可能 ,个体基因差异也正在被发现 ,并产生了一个新的领域———药物基因组学 ,药物开发的模式发生了根本性的改变。基因组解析将为许多新药开发提供目标 ,新的药物筛选系统正在形成 ,基于新的作用功能的先导化合物正在被发现 ,利用DNA微阵列技术而实施药理学与安全性评价 ,从基因序列开始对药物标靶的立体构造进行预测 ,从而选择最优秀的化合物。对于临床试验 ,诊断患者的基因多态性 ,筛选最合适的试验人群 ,提高新药的通过率 ,根据个体的基因差异使给药个体化 ,减少副作用 ,加速新药的开发。…  相似文献   

8.
泊沙康唑为新一代三唑类广谱抗真菌药,临床主要用于侵袭性曲霉菌病、念珠菌病的预防和难治性口咽念珠菌病的治疗,具有抗菌 活性高、耐受性好、不良反应少等特点,但其口服后生物利用度具有较大的个体差异。综述泊沙康唑混悬液的药动学影响因素、不同患者 人群的药动学特征以及群体药动学特征、药动学 / 药效学特性、治疗药物监测对临床疗效和不良反应的重要影响,以指导临床个体化用药, 提高用药的有效性和安全性。  相似文献   

9.
目的:研究分析中药临床合理用药的安全性以及相应的解决措施,为中药临床合理用药提供相应的借鉴以及参考。方法:选取2014年10月至2015年2期间收治的患者120例,将选取的所有队形列为研究对象。其中不良反应发生患者为50例,对该发生不良反应患者进行临床用药情况分析,同时对其用药安全性进行有效的评价以及分析。结果:50例患者导致不良反应的因素主要包括以下几种:未进行辨证论治,药物用法错误、药物用量错误、中药炮制不不满足实际标准以及中西药联合应用不不恰当,当然还存在其他的原因。结论:我们需要强化中药使用过程中的辨证力度、炮制、煎煮以及配伍等的利用度。  相似文献   

10.
近20~30年中.生物技术在中国得到了迅猛的发展。随着生物制药技术的发展,生物药物的质量越来越得到重视。生物药物从研究到上市,其过程主要包括实验室成果转化、临床试验、由患者广泛应用。药物研发成功的关键是药物的有效性,同时药物的安全性则更为重要。因此在严格确保高质量的同时,确保其有效性及工艺的稳定性显得尤为重。  相似文献   

11.
Multiple drug strategies for many cancer types are now readily available and there is a clear need for tools to inform decision making on therapy selection. Although there is still a long way to go before pharmacogenomics achieves the goal of individualized selection of cancer treatment, promising progress is being made. Genetic testing for thiopurine methyltransferase (TPMT) variant alleles in patients prior to mercaptopurine administration, and for UGT1A1*28 in patients prior to administration of irinotecan therapy, along with the instigation of genotype-guided clinical trials (e.g. TYMS) are important advances in cancer pharmacogenomics. Markers for the toxicity and efficacy of many oncology drugs remain unknown; however, the examples highlighted here suggest progress is being made towards the incorporation of pharmacogenomics into clinical practice in oncology.  相似文献   

12.
精神疾病危害严重,其发病机制复杂难解,临床治疗效果不一,且存在明显的个体差异.近期精准医学研究发现精神药物作用于脑神经的生化过程受到遗传多态性的影响.本文从五羟色胺能、去甲肾上腺素能和多巴胺能三大系统入手,系统综述精神药理影像遗传学的相关研究进展,深入探讨精神药理的神经作用机制以及药物-基因-脑之间的交互作用.我们发现:SLC6A4、BDNF、FKBP5、COMT和多巴胺相关受体等基因多态性与多种精神疾病的发生发展及其治疗效果具有一定的相关性,可能成为相关精神疾病诊断的候选基因.杏仁核、海马、眶额叶、扣带回和前额叶等皮层与皮层下脑结构可能是不同神经递质相关的基因多态性影响精神药物生化作用过程的关键靶点脑区.在建立精神药物-基因-脑影像-行为的因果链中,仍然存在很多相互矛盾的结果和一定的局限性.因此,开展同质性强的临床试验、研究表观遗传作用等可以作为未来的研究发展趋势.  相似文献   

13.
The goal of cancer pharmacogenomics is to obtain benefit from personalized approaches of cancer treatment and prevention. Recent advances in genomic research have shed light on the crucial role of genetic variants, mainly involving genes encoding drug-metabolizing enzymes, drug transporters and targets, in driving different treatment responses among individuals, in terms of therapeutic efficacy and safety. Although a considerable amount of new targeted agents have been designed based on a finely understanding of molecular alterations in cancer, a wide gap between pharmacogenomic knowledge and clinical application still persists. This review focuses on the relevance of mutational analyses in predicting individual response to antitumor therapy, in order to improve the translational impact of genetic information on clinical practice.  相似文献   

14.
Pharmacogenomics is the application of genomics technology to the discovery and development of drugs. A greater understanding of the way in which individuals with a particular genotype respond to a drug allows manufacturers to identify population subgroups that will benefit most from a particular drug. The increasing emphasis on pharmacogenomics is likely to raise ethical and legal questions regarding, among other things, the design of research studies, the construction of clinical trials and the pricing of drugs.  相似文献   

15.
16.
Human genome project: pharmacogenomics and drug development   总被引:2,自引:0,他引:2  
Now that all 30,000 or so genes that make up the human genome have been deciphered, pharmaceutical industries are emerging to capitalize the custom based drug treatment. Understanding human genetic variation promises to have a great impact on our ability to uncover the cause of individual variation in response to therapeutics. The study of association between genetics and drug response is called pharmacogenomics. The potential implication of genomics and pharmacogenomics in clinical research and clinical medicine is that disease could be treated according to the interindividual differences in drug disposition and effects, thereby enhancing the drug discovery and providing a stronger scientific basis of each patient's genetic constitution. Sequence information derived from the genomes of many individuals is leading to the rapid discovery of single nucleotide polymorphisms or SNPs. Detection of these human polymorphisms will fuel the discipline of pharmacogenomics by developing more personalized drug therapies. A greater understanding of the way in which individuals with a particular genotype respond to a drug allows manufacturers to identify population subgroups that will benefit most from a particular drug. The increasing emphasis on pharmacogenomics is likely to raise ethical and legal questions regarding, among other things, the design of research studies, the construction of clinical trials and the pricing of drugs.  相似文献   

17.
Pharmacogenetics is a field aimed at understanding the genetic contribution to inter-patient variability in drug efficacy and toxicity. Treatment of cardiovascular disease is, in most cases, guided by evidence from well-controlled clinical trials. Given the solid scientific basis for the treatment of most cardiovascular diseases, it is common for patients with a given disease to be treated in essentially the same manner. Thus, the clinical trials have been very informative about treating large groups of patients with a given disease, but are slightly less informative about the treatment of individual patients. Pharmacogenetics and pharmacogenomics have the potential of taking the information derived from large clinical trials and further refining it to select the drugs with the greatest likelihood for benefit, and least likelihood for harm, in individual patients, based on their genetic make-up. In this paper, the current literature on cardiovascular pharmacogenetics is emphasised, and how the use of pharmacogenetic/pharmacogenomic information may be particularly useful in the future in the treatment of cardiovascular diseases is also highlighted.  相似文献   

18.
Pharmacogenomics addresses the impacts of diverse and multiple genes in populations as determinants of responses of individual patients to drugs. The field has its roots in basic science, and is pivotal in drug development, elucidation of therapeutic efficacy, and constraining the risks of adverse drug reactions. Regulatory agencies are relying increasingly on pharmacogenomics for identification of patients who are particularly likely to benefit from treatment with specific agents and exclusion of those at risk of adverse drug reactions. Practical applications of pharmacogenomics already abound particularly in the use of drugs acting on the central nervous system and on the cardiovascular system. The Society for Experimental Biology and Medicine (SEBM) is proud and pleased to have devoted its 2008 symposium, presented at the annual Experimental Biology meeting in San Diego on April 6, 2008, to advances in pharmacogenomics with emphasis on drug development, regulatory agency considerations, and clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号