首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
T-cell responses to dengue viruses may be important in both protective immunity and pathogenesis. This study of 48 Vietnamese adults with secondary dengue virus infections defined the breadth and magnitude of peripheral T-cell responses to 260 overlapping peptide antigens derived from a dengue virus serotype 2 (DV2) isolate. Forty-seven different peptides evoked significant gamma interferon enzyme-linked immunospot (ELISPOT) assay responses in 39 patients; of these, 34 peptides contained potentially novel T-cell epitopes. NS3 and particularly NS3200-324 were important T-cell targets. The breadth and magnitude of ELISPOT responses to DV2 peptides were independent of the infecting dengue virus serotype, suggesting that cross-reactive T cells dominate the acute response during secondary infection. Acute ELISPOT responses were weakly correlated with the extent of hemoconcentration in individual patients but not with the nadir of thrombocytopenia or overall clinical disease grade. NS3556-564 and Env414-422 were identified as novel HLA-A*24 and B*07-restricted CD8+ T-cell epitopes, respectively. Acute T-cell responses to natural variants of Env414-422 and NS3556-564 were largely cross-reactive and peaked during disease convalescence. The results highlight the importance of NS3 and cross-reactive T cells during acute secondary infection but suggest that the overall breadth and magnitude of the T-cell response is not significantly related to clinical disease grade.  相似文献   

2.
The evolution of peptide-specific CD4(+) T-cell responses to acute viral infections of humans is poorly understood. We analyzed the response to parvovirus B19 (B19), a ubiquitous and clinically significant pathogen with a compact and conserved genome. The magnitude and breadth of the CD4(+) T-cell response to the two B19 capsid proteins were investigated using a set of overlapping peptides and gamma interferon-specific enzyme-linked immunospot assays of peripheral blood mononuclear cells (PBMCs) from a cohort of acutely infected individuals who presented with acute arthropathy. These were compared to those for a cohort of B19-specific immunoglobulin M-negative (IgM(-)), IgG(+) remotely infected individuals. Both cohorts of individuals were found to make broad CD4(+) responses. However, while the responses following acute infection were detectable ex vivo, responses in remotely infected individuals were only detected after culture. One epitope (LASEESAFYVLEHSSFQLLG) was consistently targeted by both acutely (10/12) and remotely (6/7) infected individuals. This epitope was DRB1*1501 restricted, and a major histocompatibility complex peptide tetramer stained PBMCs from acutely infected individuals in the range of 0.003 to 0.042% of CD4(+) T cells. Tetramer-positive populations were initially CD62L(lo); unlike the case for B19-specific CD8(+) T-cell responses, however, CD62L was reexpressed at later times, as responses remained stable or declined slowly. This first identification of B19 CD4(+) T-cell epitopes, including a key immunodominant peptide, provides the tools to investigate the breadth, frequency, and functions of cellular responses to this virus in a range of specific clinical settings and gives an important reference point for analysis of peptide-specific CD4(+) T cells during acute and persistent virus infections of humans.  相似文献   

3.
For development of an effective T cell-based AIDS vaccine, it is critical to define the antigens that elicit the most potent responses. Recent studies have suggested that Gag-specific and possibly Vif/Nef-specific CD8+ T cells can be important in control of the AIDS virus. Here, we tested whether induction of these CD8+ T cells by prophylactic vaccination can result in control of simian immunodeficiency virus (SIV) replication in Burmese rhesus macaques sharing the major histocompatibility complex class I (MHC-I) haplotype 90-010-Ie associated with dominant Nef-specific CD8+ T-cell responses. In the first group vaccinated with Gag-expressing vectors (n = 5 animals), three animals that showed efficient Gag-specific CD8+ T-cell responses in the acute phase postchallenge controlled SIV replication. In the second group vaccinated with Vif- and Nef-expressing vectors (n = 6 animals), three animals that elicited Vif-specific CD8+ T-cell responses in the acute phase showed SIV control, whereas the remaining three with Nef-specific but not Vif-specific CD8+ T-cell responses failed to control SIV replication. Analysis of 18 animals, consisting of seven unvaccinated noncontrollers and the 11 vaccinees described above, revealed that the sum of Gag- and Vif-specific CD8+ T-cell frequencies in the acute phase was inversely correlated with plasma viral loads in the chronic phase. Our results suggest that replication of the AIDS virus can be controlled by vaccine-induced subdominant Gag/Vif epitope-specific CD8+ T cells, providing a rationale for the induction of Gag- and/or Vif-specific CD8+ T-cell responses by prophylactic AIDS vaccines.  相似文献   

4.
Progressive immune dysfunction and AIDS develop in most cases of human immunodeficiency virus type 1 (HIV-1) infection but in only 25 to 30% of persons with HIV-2 infection. However, the natural history and immunologic responses of individuals with dual HIV-1 and HIV-2 infection are largely undefined. Based on our previous findings, we hypothesized that among patients with dual infection the control of HIV-1 is associated with the ability to respond to HIV-2 Gag epitopes and to maintain HIV-specific CD4+ T-cell responses. To test this, we compared the HIV-specific ex vivo IFN-γ enzyme-linked immunospot (ELISPOT) assay responses of 19 dually infected individuals to those of persons infected with HIV-1 or HIV-2 only. Further, we assessed the functional profile of HIV Gag-specific CD4+ and CD8+ T cells from nine HIV dually infected patients by using a multicolor intracellular cytokine staining assay. As determined by ELISPOT assay, the magnitude and frequency of IFN-γ-secreting T-cell responses to gene products of HIV-1 were higher than those to gene products of HIV-2 (2.64 versus 1.53 log10 IFN-γ spot-forming cells/106 cells [90% versus 63%, respectively].) Further, HIV-1 Env-, Gag-, and Nef- and HIV-2 Gag-specific responses were common; HIV-2 Nef-specific responses were rare. HIV-specific CD4+ T helper responses were detected in nine of nine dually infected subjects, with the majority of these T cells producing gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and, to a lesser extent, interleukin-2. The HIV-1 plasma viral load was inversely correlated with HIV-2 Gag-specific IFN-γ-/TNF-α-secreting CD4+ and HIV-2 Gag-specific IFN-γ-secreting CD8+ T cells. In conclusion, the T-cell memory responses associated with containment of single HIV-1 and HIV-2 infection play a similar significant role in the immune control of dual HIV-1 and HIV-2 infection.  相似文献   

5.
The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities.  相似文献   

6.
Human immunodeficiency virus type 2 (HIV-2) infection is typically less virulent than HIV-1 infection, which may permit the host to mount more effective, sustained T-cell immunity. We investigated antiviral gamma interferon-secreting T-cell responses by an ex vivo Elispot assay in 68 HIV-1- and 55 HIV-2-infected Senegalese patients to determine if differences relate to more efficient HIV-2 control. Homologous HIV-specific T cells were detected in similar frequencies (79% versus 76%, P = 0.7) and magnitude (3.12 versus 3.08 log(10) spot-forming cells/10(6) peripheral blood mononuclear cells) in HIV-1 and HIV-2 infection, respectively. Gag-specific responses predominated in both groups (>/=64%), and significantly higher Nef-specific responses occurred in HIV-1-infected (54%) than HIV-2-infected patients (22%) (P < 0.001). Heterologous responses were more frequent in HIV-1 than in HIV-2 infection (46% versus 27%, P = 0.04), but the mean magnitude was similar. Total frequencies of HIV-specific responses in both groups did not correlate with plasma viral load and CD4(+) T-cell count in multivariate regression analyses. However, the magnitude of HIV-2 Gag-specific responses was significantly associated with lower plasma viremia in HIV-1-infected patients (P = 0.04). CD4(+) T-helper responses, primarily recognizing HIV-2 Gag, were detected in 48% of HIV-2-infected compared to only 8% of HIV-1-infected patients. These findings indicate that improved control of HIV-2 infection may relate to the contribution of T-helper cell responses. By contrast, the superior control of HIV-1 replication associated with HIV-2 Gag responses suggests that these may represent cross-reactive, higher-avidity T cells targeting epitopes within Gag regions of functional importance in HIV replication.  相似文献   

7.
Human immunodeficiency virus (HIV)'s tremendous sequence variability is a major obstacle for the development of cytotoxic-T-lymphocyte-based vaccines, especially since much of this variability is selected for by CD8+ T cells. We investigated to what extent reactivity to escape variant peptides in standard enzyme-linked immunospot (ELISPOT) assays predicts the recognition of cells infected with corresponding escape variant viruses. Most of the variant peptides tested were recognized in standard ELISPOT and intracellular cytokine stain (ICS) assays. Functional avidity of epitope-specific T cells for some of the variants was, however, markedly reduced. These mutations which reduced avidity also abrogated recognition by epitope-specific CD8+ T cells in a viral suppression assay. Our results indicate that “cross-reactive” CD8+ T-cell responses identified in ELISPOT and ICS assays using a single high concentration of variant peptide often fail to predict the recognition of cells infected with variant viruses.  相似文献   

8.
A human immunodeficiency virus (HIV)-preventive vaccine will likely need to induce broad immunity that can recognize antigens expressed within circulating strains. To understand the potentially relevant responses that T-cell based vaccines should elicit, we examined the ability of T cells from early infected persons to recognize a broad spectrum of potential T-cell epitopes (PTE) expressed by the products encoded by the HIV type 1 (HIV-1) nef gene, which is commonly included in candidate vaccines. T cells were evaluated for gamma interferon (IFN-gamma) secretion using two peptide panels: subtype B consensus (CON) peptides and a novel peptide panel providing 70% coverage of PTE in subtype B HIV-1 Nef. Eighteen of 23 subjects' T cells recognized HIV-1 Nef. In one subject, Nef-specific T cells were detected with the PTE but not with the CON peptides. The greatest frequency of responses spanned Nef amino acids 65 to 103 and 113 to 147, with multiple epitope variants being recognized. Detection of both the epitope domain number and the response magnitude was enhanced using the PTE peptides. On average, we detected 2.7 epitope domains with the PTE peptides versus 1.7 domains with the CON peptides (P = 0.0034). The average response magnitude was 2,169 spot-forming cells (SFC)/10(6) peripheral blood mononuclear cells (PBMC) with the PTE peptides versus 1,010 SFC/10(6) PBMC with CON peptides (P = 0.0046). During early HIV-1 infection, Nef-specific T cells capable of recognizing multiple variants are commonly induced, and these responses are readily detected with the PTE peptide panel. Our findings suggest that Nef responses induced by a given vaccine strain before HIV-1 exposure may be sufficiently broad to recognize most variants within subtype B HIV-1.  相似文献   

9.
CD8 T-cell responses are thought to be crucial for control of viremia in human immunodeficiency virus (HIV) infection but ultimately fail to control viremia in most infected persons. Studies in acute infection have demonstrated strong CD8-mediated selection pressure and evolution of mutations conferring escape from recognition, but the ability of CD8 T-cell responses that persist in late-stage infection to recognize viruses present in vivo has not been determined. Therefore, we studied 24 subjects with advanced HIV disease (median viral load = 142,000 copies/ml; median CD4 count = 71/ micro l) and determined HIV-1-specific CD8 T-cell responses to all expressed viral proteins using overlapping peptides by gamma interferon Elispot assay. Chronic-stage virus was sequenced to evaluate autologous sequences within Gag epitopes, and functional avidity of detected responses was determined. In these subjects, the median number of epitopic regions targeted was 13 (range, 2 to 39) and the median cumulative magnitude of CD8 T-cell responses was 5,760 spot-forming cells/10(6) peripheral blood mononuclear cells (range, 185 to 24,700). On average six (range, one to 8) proteins were targeted. For 89% of evaluated CD8 T-cell responses, the autologous viral sequence was predicted to be well recognized by these responses and the majority of analyzed optimal epitopes were recognized with medium to high functional avidity by the contemporary CD8 T cells. Withdrawal of antigen by highly active antiretroviral therapy led to a significant decline both in breadth (P = 0.032) and magnitude (P = 0.0098) of these CD8 T-cell responses, providing further evidence that these responses had been driven by recognition of autologous virus. These results indicate that strong, broadly directed, and high-avidity gamma-interferon-positive CD8 T-cells directed at autologous virus persist in late disease stages, and the absence of mutations within viral epitopes indicates a lack of strong selection pressure mediated by these responses. These data imply functional impairment of CD8 T-cell responses in late-stage infection that may not be reflected by gamma interferon-based screening techniques.  相似文献   

10.
In order to investigate if there is any definite correlation between the degree of T-cell response in the bursa of Fabricius (BF) and the virulence of Infectious Bursal Disease (IBD) virus strains, chickens were infected with strains of different virulence i.e. mild (Lukert strain), intermediate (Georgia strain) or invasive intermediate (IV-95 strain). At various times post-inoculation, bursal samples were collected to study virus specific histopathological lesions, the distribution of viral antigen and the extent of T-cell infiltration in the bursa. Most severe bursal lesions were induced by IV-95 strain (the invasive intermediate strain), whereas Lukert, the mild strain caused the least severe lesions. The number of virus positive cells in the bursa was highest in chickens infected with IV-95 strain. Substantial infiltration of CD4+ and CD8+ T-cells in the bursal follicles of virus-infected groups was observed from 4 d.p.i. onwards. The magnitude of T-cell response was more in the birds infected with intermediate (Georgia) or invasive intermediate strains of virus than chickens inoculated with mild (Lukert) strain, even when 10-fold higher doses of the inoculums were used. PHA responses to peripheral lymphocytes were found suppressed in all the groups of chickens only transiently. The results indicate that the magnitude of T-cell responses in BF during IBDV infection is influenced more by the virulence of virus strain rather than the quantum of viral load in BF. Over all these studies may have implications in understanding the role of T-cells in pathogenesis and immunity in IBD.  相似文献   

11.
Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/10(6) PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.  相似文献   

12.
Virus-specific CD8+ T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206–216 and Gag241–249 epitope-specific CD8+ T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8+ T-cell responses induced in all the 90-120-Ia+ macaques on SIV replication remains unknown. Here, we identified three CD8+ T-cell epitopes, Nef9–19, Nef89–97, and Nef193–203, associated with 90-120-Ia. Nef9–19 and Nef193–203 epitope-specific CD8+ T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8+ T cells, indicating that these CD8+ T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia.  相似文献   

13.
The importance of CD8+ T-cell responses in the control of human immunodeficiency virus type 1 (HIV-1) infection has been demonstrated, yet few studies have been able to correlate these responses with markers of HIV-1 disease progression. This study measured cell-mediated immune responses using peripheral blood mononuclear cells (PBMC) obtained from 27 patients with chronic HIV-1 infection, the majority of whom were off antiretroviral therapy. The ELISPOT assay was used to detect gamma interferon-secreting PBMC after stimulation with overlapping HIV-1 peptides spanning the Gag, Pol, Env, and Nef proteins in addition to the baculovirus-derived p24 and gp160 proteins. All volunteers had responses to at least one HIV-1-specific peptide. All but one of the subjects (96%) responded to the Gag peptide pool, and 86% responded to the Pol and/or Nef peptide pools. The magnitude and the breadth of T-cell responses directed to either the Gag or p24 peptide pools correlated inversely with viral load in plasma (r = -0.60, P < 0.001 and r = -0.52, P < 0.005, respectively) and directly with absolute CD4+ T-cell counts (r = 0.54, P < 0.01 and r = 0.39, P < 0.05, respectively) using the Spearman rank correlation test. Responses to the Pol and integrase peptide pools also correlated with absolute CD4+ T-cell counts (r = 0.45, P < 0.05 and r = 0.49, P < 0.01, respectively). No correlation with markers of disease progression was seen with specific T-cell responses directed toward the Env or Nef peptides. These data serve as strong evidence that major histocompatibility complex class I presentation of Gag peptides is an essential feature for any HIV-1 vaccine designed to elicit optimal CD8+ T-cell responses.  相似文献   

14.
Functional hepatitis B virus (HBV)-specific T cells are significantly diminished in individuals chronically infected with HBV compared to individuals with self-limiting HBV infection or those on anti-HBV therapy. In individuals infected with human immunodeficiency virus type 1 (HIV-1), coinfection with HBV is associated with an increased risk of worsening liver function following antiviral therapy and of more rapid HBV disease progression. Total HBV-specific T-cell responses in subjects with diverse genetic backgrounds were characterized by using a library of 15-mer peptides overlapping by 11 amino acids and spanning all HBV proteins. The magnitude and breadth of CD4(+) and CD8(+) T-cell responses to HBV in peripheral blood were examined by flow cytometry to detect gamma interferon production following stimulation with HBV peptide pools. Chronic HBV carriers (n = 34) were studied, including individuals never treated for HBV infection (n = 7), HBV-infected individuals receiving anti-HBV therapy (n = 13), and HIV-1-HBV-coinfected individuals receiving anti-HBV therapy (n = 14). CD4(+) and CD8(+) HBV-specific T-cell responses were more frequently detected and the CD8(+) T-cell responses were of greater magnitude and breadth in subjects on anti-HBV treatment than in untreated chronic HBV carriers. There was a significant inverse correlation between detection of a HBV-specific T-cell response and HBV viral load. HBV-specific CD4(+) and CD8(+) T-cell responses were significantly (fivefold) reduced compared with HIV-specific responses. Although, the frequency and breadth of HBV-specific CD8(+) T-cell responses were comparable in the monoinfected and HIV-1-HBV-coinfected groups, HBV-specific CD4(+) T-cell responses were significantly reduced in HIV-1-HBV-coinfected individuals. Therefore, HIV-1 infection has a significant and specific effect on HBV-specific T-cell immunity.  相似文献   

15.
HIV-1 encephalitis (HIVE) and its associated dementia can occur in up to 20% of infected individuals, usually when productive viral replication in brain mononuclear phagocytes (macrophages and microglia) and depletion of CD4(+) T lymphocytes are most significant. T cells control viral replication through much of HIV-1 disease, but how this occurs remains incompletely understood. With this in mind, we studied HIV-1-specific CTL responses in a nonobese diabetic (NOD)-SCID mouse model of HIVE. HIV-1-infected monocyte-derived macrophages (MDM) were injected into the basal ganglia after syngeneic immune reconstitution by HLA-A*0201-positive human PBL to generate a human PBL-NOD-SCID HIVE mouse. Engrafted T lymphocytes produced HIV-1gag- and HIV-1pol-specific CTL against virus-infected brain MDM within 7 days. This was demonstrated by tetramer staining of human PBL in mouse spleens and by IFN-gamma ELISPOT. CD8, granzyme B, HLA-DR, and CD45R0 Ag-reactive T cells and CD79alpha-positive B cells migrated to and were in contact with human MDM in brain areas where infected macrophages were abundant. The numbers of productively infected MDM were markedly reduced (>85%) during 2 wk of observation. The human PBL-NOD-SCID HIVE mouse provides a new tool for studies of cellular immune responses against HIV-1-infected brain mononuclear phagocytes during natural disease and after vaccination.  相似文献   

16.
Most of humanity is chronically infected with human herpesvirus 6 (HHV-6), with viral replication controlled at least in part by a poorly characterized CD4 T cell response. Identification of viral epitopes recognized by CD4 T cells is complicated by the large size of the herpesvirus genome and a low frequency of circulating T cells responding to the virus. Here, we present an alternative to classical epitope mapping approaches used to identify major targets of the T cell response to a complex pathogen like HHV-6B. In the approach presented here, extracellular virus preparations or virus-infected cells are fractionated by SDS-PAGE, and eluted fractions are used as source of antigens to study cytokine responses in direct ex vivo T cell activation studies. Fractions inducing significant cytokine responses are analyzed by mass spectrometry to identify viral proteins, and a subset of peptides from these proteins corresponding to predicted HLA-DR binders is tested for IFN-γ production in seropositive donors with diverse HLA haplotypes. Ten HHV-6B viral proteins were identified as immunodominant antigens. The epitope-specific response to HHV-6B virus was complex and variable between individuals. We identified 107 peptides, each recognized by at least one donor, with each donor having a distinctive footprint. Fourteen peptides showed responses in the majority of donors. Responses to these epitopes were validated using in vitro expanded cells and naturally expressed viral proteins. Predicted peptide binding affinities for the eight HLA-DRB1 alleles investigated here correlated only modestly with the observed CD4 T cell responses. Overall, the response to the virus was dominated by peptides from the major capsid protein U57 and major antigenic protein U11, but responses to other proteins including glycoprotein H (U48) and tegument proteins U54 and U14 also were observed. These results provide a means to follow and potentially modulate the CD4 T-cell immune response to HHV-6B.  相似文献   

17.
Effective HIV-specific T-cell immunity requires the ability to inhibit virus replication in the infected host, but the functional characteristics of cells able to mediate this effect are not well defined. Since Gag-specific CD8 T cells have repeatedly been associated with lower viremia, we examined the influence of Gag specificity on the ability of unstimulated CD8 T cells from chronically infected persons to inhibit virus replication in autologous CD4 T cells. Persons with broad (≥6; n = 13) or narrow (≤1; n = 13) Gag-specific responses, as assessed by gamma interferon enzyme-linked immunospot assay, were selected from 288 highly active antiretroviral therapy (HAART)-naive HIV-1 clade C-infected South Africans, matching groups for total magnitude of HIV-specific CD8 T-cell responses and CD4 T-cell counts. CD8 T cells from high Gag responders suppressed in vitro replication of a heterologous HIV strain in autologous CD4 cells more potently than did those from low Gag responders (P < 0.003) and were associated with lower viral loads in vivo (P < 0.002). As previously shown in subjects with low viremia, CD8 T cells from high Gag responders exhibited a more polyfunctional cytokine profile and a stronger ability to proliferate in response to HIV stimulation than did low Gag responders, which mainly exhibited monofunctional CD8 T-cell responses. Furthermore, increased polyfunctionality was significantly correlated with greater inhibition of viral replication in vitro. These data indicate that enhanced suppression of HIV replication is associated with broader targeting of Gag. We conclude that it is not the overall magnitude but rather the breadth, magnitude, and functional capacity of CD8 T-cell responses to certain conserved proteins, like Gag, which predict effective antiviral HIV-specific CD8 T-cell function.Studies aimed at correlating overall quantitative differences in breadth or magnitude of the gamma interferon (IFN-γ)-positive HIV-specific CD8 T-cell response and plasma HIV viral loads have failed to show an association with control of viremia (2, 18). However, multiple studies (10, 12-15, 18, 22, 29) have shown that broadly directed and/or dominant HIV-specific CD8 T-cell responses against the Gag protein, as measured by IFN-γ enzyme-linked immunospot (ELISPOT) assay, are associated with lower viremia in chronic HIV-1 infection. In contrast, non-Gag-specific T-cell responses, as shown in some studies, did not contribute to immune control. Indeed, more broadly directed CD8 T-cell responses directed to the Env protein have been associated with elevated viremia (15). The functional mechanism underlying enhanced viral control by Gag-specific CD8 T-cell responses has not been determined.One potential explanation for enhanced antiviral pressure by Gag-specific but not other virus-specific CD8 T-cell responses may be differences in the fitness cost associated with escape mutations within the highly conserved Gag protein compared to that of other viral proteins (5, 23, 27). Alternatively, the maturation phenotype and functional quality of HIV-specific CD8 T cells may be the more critical predictors of the effectiveness of a virus-specific response (1, 4, 7, 15, 20, 25). In addition to the secretion of IFN-γ, CD8 T cells exhibit a spectrum of additional antiviral functions, including cytolysis, cell proliferation, and production of cytokines and chemokines. The capacity of CD8 T cells to secrete multiple cytokines following stimulation with HIV peptides is also associated with long-term nonprogressive infection, although subsequent studies have argued that polyfunctionality may simply correlate with reduced antigen stimulation rather than being a direct mediator of viral control (4, 19, 28, 34). Increased expression of the negative immunoregulatory molecule PD-1 on HIV-specific CD8 T cells is associated with higher viral loads (8, 21, 30). Finally, high HIV-specific CD8 T-cell proliferative capacity is associated with lower HIV viral loads (9). However, a direct link between HIV-specific antiviral efficacy and any specific functional capacity has yet to be established.Following the resolution of acute HIV-1 infection, HIV-specific CD8 T-cell responses reduce viral replication to a set point, which varies dramatically among individuals but is a strong predictor of the rate of HIV disease progression (17). It is therefore plausible that more potent antiviral CD8 T-cell responses, at set point, that are able to contain viral replication more aggressively may provide enhanced control of disease progression. However, to date, the majority of studies aimed at defining differences in the viral suppressive properties of protective HIV-1-specific CD8 T-cell responses have focused narrowly either on single-peptide-specific cytotoxic T lymphocyte (CTL) clones or cell lines (7) or on specific subpopulations of study subjects such as “elite” controllers (25). Studies examining the relationship between in vitro inhibition of viral replication over a broad range of viral loads and antigen specificities have not been performed. Furthermore, little work has focused on defining the antiviral properties of HIV-specific CD8 T-cell responses in clade C infection (33).Thus, to address the potential role of antigen specificity in the antiviral properties of HIV-specific CD8 T-cell responses, we compared the phenotypic and functional characteristics of bulk CD8 T cells in a group of untreated chronically clade C-infected persons that broadly targeted Gag-specific responses (≥6 Gag-specific responses) to those of subjects that had very narrow or absent Gag-specific responses (≤1 Gag-specific response). Importantly, the two groups were selected such that total CD4 cell counts and total magnitude of HIV-specific CD8 T-cell responses by IFN-γ ELISPOT assay were matched. Our results confirm that, for the same level of CD4 cell count and overall magnitude of HIV-specific CD8 T-cell responses, subjects whose CD8 T-cell responses are dominantly and broadly directed against the Gag protein exhibit lower plasma viral loads than do subjects who target this protein less. Furthermore, we demonstrate that this enhanced viral control is associated with an enhanced ability of isolated CD8 T cells to inhibit replication of a heterologous HIV-1 strain in autologous CD4 cells in vitro, enhanced ability to proliferate in the presence of cognate antigen, and a more polyfunctional cytokine response, but not with a difference in the maturation status of HIV-specific CD8 T cells. These data indicate that the specificity of the CD8 T-cell response to HIV is important for viral control and that it is a distinct polyfunctional phenotype of CD8 T cells that is able to proliferate and secrete antiviral cytokines, which is indicative of effective antiviral CD8 T-cell function.  相似文献   

18.
Effective, vaccine-induced CD8+ T-cell responses should recognize infected cells early enough to prevent production of progeny virions. We have recently shown that Gag-specific CD8+ T cells recognize simian immunodeficiency virus-infected cells at 2 h postinfection, whereas Env-specific CD8+ T cells do not recognize infected cells until much later in infection. However, it remains unknown when other proteins present in the viral particle are presented to CD8+ T cells after infection. To address this issue, we explored CD8+ T-cell recognition of epitopes derived from two other relatively large virion proteins, Pol and Nef. Surprisingly, infected cells efficiently presented CD8+ T-cell epitopes from virion-derived Pol proteins within 2 h of infection. In contrast, Nef-specific CD8+ T cells did not recognize infected cells until 12 h postinfection. Additionally, we show that SIVmac239 Nef downregulated surface major histocompatibility complex class I (MHC-I) molecules beginning at 12 h postinfection, concomitant with presentation of Nef-derived CD8+ T-cell epitopes. Finally, Pol-specific CD8+ T cells eliminated infected cells as early as 6 h postinfection, well before MHC-I downregulation, suggesting a previously underappreciated antiviral role for Pol-specific CD8+ T cells.  相似文献   

19.
Although there is increasing evidence that virus-specific cytotoxic-T-lymphocyte (CTL) responses play an important role in the control of human immunodeficiency virus (HIV) replication in vivo, only scarce CTL data are available for the ethnic populations currently most affected by the epidemic. In this study, we examined the CD8(+)-T-cell responses in African-American, Caucasian, Hispanic, and Caribbean populations in which clade B virus dominates and analyzed the potential factors influencing immune recognition. Total HIV-specific CD8(+)-T-cell responses were determined by enzyme-linked immunospot assays in 150 HIV-infected individuals by using a clade B consensus sequence peptide set spanning all HIV proteins. A total of 88% of the 410 tested peptides were recognized, and Nef- and Gag-specific responses dominated the total response for each ethnicity in terms of both breadth and magnitude. Three dominantly targeted regions within these proteins that were recognized by >90% of individuals in each ethnicity were identified. Overall, the total breadth and magnitude of CD8(+)-T-cell responses correlated with individuals' CD4 counts but not with viral loads. The frequency of recognition for each peptide was highly correlated with the relative conservation of the peptide sequence, the presence of predicted immunoproteasomal cleavage sites within the C-terminal half of the peptide, and a reduced frequency of amino acids that impair binding of optimal epitopes to the restricting class I molecules. The present study thus identifies factors that contribute to the immunogenicity of these highly targeted and relatively conserved sequences in HIV that may represent promising vaccine candidates for ethnically heterogeneous populations.  相似文献   

20.
A polyepitopic CD8+ T-cell response is critical for the control of hepatitis B virus (HBV) infection. The HBV X protein (HBx) is a multifunctional protein that is important for the viral life cycle and for host-virus interactions. The aim of this study was to analyze the immunogenicity and dominance of various HLA-A*0201-restricted HBx-derived epitopes. For this purpose, we immunized HLA-A*0201-transgenic mice with HBx-derived peptides and DNA. This is a powerful model for studying the induction of HLA-A*0201-restricted immune responses in vivo, as these mice possess a cytotoxic T lymphocyte (CTL) repertoire representative of HLA-A2.1 individuals. We used cytotoxic tests and enzyme-linked immunosorbent spot (ELISPOT) assays to study the induction of specific cytotoxic and interferon (IFN)-gamma-secreting T cells. This allowed us to classify the HBx epitopes according to their T-cell activation capacity. After endogenous processing of the antigen synthesized in vivo after DNA-based immunization, we found that the HBx-specific T-cell response is targeted against one immunodominant epitope. Furthermore, following peptide immunization, we identified six additional novel subdominant T-cell epitopes. Inclusion of well-characterized epitopic sequences of HBx in a new vaccine for chronic HBV infections could help to broaden the T-cell response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号