首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/10(6) PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.  相似文献   

2.
The hepatitis C virus (HCV)-specific CD8(+)-T-cell response is thought to play a critical role in HCV infection. Studies of these responses have largely relied on the analysis of a small number of previously described or predicted HCV epitopes, mostly restricted by HLA A2. In order to determine the actual breadth and magnitude of CD8(+)-T-cell responses in the context of diverse HLA class I alleles, we performed a comprehensive analysis of responses to all expressed HCV proteins. By using a panel of 301 overlapping peptides, we analyzed peripheral blood mononuclear cells (PBMC) from a cohort of 14 anti-HCV-positive, HLA A2-positive individuals in an enzyme-linked immunospot assay. Only four subjects had detectable HLA A2-restricted responses in PBMC, and only 3 of 19 predicted A2 epitopes were targeted, all of which were confirmed by tetramer analysis. In contrast, 9 of 14 persons showed responses with more comprehensive analyses, with many responses directed against previously unreported epitopes. These results indicate that circulating HCV-specific CD8(+)-T-cell responses can be detected in PBMC in the majority of infected persons and that these responses are heterogeneous with no immunodominant epitopes consistently recognized. Since responses to epitopes restricted by single HLA alleles such as HLA A2 do not predict the overall response in an individual, more comprehensive approaches, as shown here, should facilitate definition of the role of the CD8(+)-T-cell response in HCV infection. Moreover, the low level or absence of responses to many predicted epitopes provides a rationale for immunotherapeutic interventions to broaden cytotoxic-T-lymphocyte recognition.  相似文献   

3.
Cytotoxic T lymphocytes (CTL) and highly active antiretroviral therapy (HAART) are known to exert strong evolutionary pressures on the virus population during human immunodeficiency virus (HIV) infection. However, it is not known whether CTL responses continue to substantially affect viral evolution during treatment. To study the effect of immunologic pressure on viral sequences during HAART, we identified 10 targeted HIV-specific CD8+-T-cell epitopes in five treatment-naive patients, sequenced each epitope in plasma-derived viruses, and then identified evidence of immunologic pressure at these epitopes by comparing the frequency of viral variants in plasma to the frequency of the CD8+-T-cell response for each variant identified. For one of the five patients, evidence of viral evolution was found during therapy. The sequence of the CTL-targeted epitope changed from an apparent escape variant prior to the initiation of therapy, to the sequence that is best recognized by the CTL response after the initiation of therapy, and then finally to a new escape variant during continued therapy. These data show that CTL-mediated pressure can continue to affect viral evolution after the initiation of HAART, even when treatment drives the viral load below detectable levels, and suggest that antiretroviral therapy may preferentially inhibit those virus variants that escape the CTL response.  相似文献   

4.
The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities.  相似文献   

5.
The absolute and relative abundance of major histocompatibility complex class I-presented viral epitopes is important in the induction and maintenance of antiviral cytotoxic-T-lymphocyte (CTL) responses. We demonstrate that the supra-abundant HLA-A*0201-restricted peptide KLWESPQEI of the measles virus nonstructural C protein induces strong gamma interferon CD8(+)-T-cell responses in children with acute measles. However, longitudinal analysis indicates that these responses are only short-lived. Thus, some viral epitopes that can be immunodominant during primary infection may fail to establish memory CTL responses.  相似文献   

6.
We studied the effect of booster injections and the long-term immune response after injections of an anti-human immunodeficiency virus type 1 (HIV-1) lipopeptide vaccine. This vaccine was injected alone or with QS21 adjuvant to 28 HIV-uninfected volunteers. One month later, after a fourth injection of the vaccine, B- and T-cell anti-HIV responses were detected in >85% of the vaccinated volunteers. One year after this injection, a long-term immune response was observed in >50% of the volunteers. At this point, a positive QS21 effect was observed only in the sustained B-cell and CD4(+)-T-cell responses. To better characterize the CD8(+)-T-cell response, we used a gamma interferon enzyme-linked immunospot method and a bank of 59 HIV-1 epitopes. For the six most common HLA molecules (HLA-A2, -A3, -A11, -A24, -B7 superfamily, and -B8), an average of 10 (range, 3 to 15) HIV-1 epitopes were tested. CD8(+)-T-cell responses were evaluated according to the HLA class I molecules of the volunteers. Each assessment was based on 18 HIV-1 epitopes in average. We showed that 31 HIV-1 epitopes elicited specific CD8(+)-T-cell responses after vaccination. The most frequently recognized peptides were Nef 68-76 (-B7), Nef 71-79 (-B7), Nef 84-92 (-A11), Nef 135-143 (-B7), Nef 136-145 (-A2), Nef 137-145 (-A2), Gag 259-267 (-B8), Gag 260-268 (-A2), Gag 267-274 (-A2), Gag 267-277 (-B7), and Gag 276-283 (A24). We found that CD8(+)-T-cell epitopes were induced at a higher number after a fourth injection (P < 0.05 compared to three injections), which indicates an increase in the breadth of HIV CD8(+)-T-cell epitope recognition after the boost.  相似文献   

7.
Vpr is preferentially targeted by CTL during HIV-1 infection   总被引:11,自引:0,他引:11  
The HIV-1 accessory proteins Vpr, Vpu, and Vif are essential for viral replication, and their cytoplasmic production suggests that they should be processed for recognition by CTLs. However, the extent to which these proteins are targeted in natural infection, as well as precise CTL epitopes within them, remains to be defined. In this study, CTL responses against HIV-1 Vpr, Vpu, and Vif were analyzed in 60 HIV-1-infected individuals and 10 HIV-1-negative controls using overlapping peptides spanning the entire proteins. Peptide-specific IFN-gamma production was measured by ELISPOT assay and flow-based intracellular cytokine quantification. HLA class I restriction and cytotoxic activity were confirmed after isolation of peptide-specific CD8(+) T cell lines. CD8(+) T cell responses against Vpr, Vpu, and Vif were found in 45%, 2%, and 33% of HIV-1-infected individuals, respectively. Multiple CTL epitopes were identified in functionally important regions of HIV-1 Vpr and Vif. Moreover, in infected individuals in whom the breadth of HIV-1-specific responses was assessed comprehensively, Vpr and p17 were the most preferentially targeted proteins per unit length by CD8(+) T cells. These data indicate that despite the small size of these proteins Vif and Vpr are frequently targeted by CTL in natural HIV-1 infection and contribute importantly to the total HIV-1-specific CD8(+) T cell responses. These findings will be important in evaluating the specificity and breadth of immune responses during acute and chronic infection, and in the design and testing of candidate HIV vaccines.  相似文献   

8.
CD8(+) T cells in HIV-infected patients are believed to contribute to the containment of the virus and the delay of disease progression. However, the frequencies of HIV-specific CD8(+) T cells, as measured by IFN-gamma secretion and tetramer binding, often do not correlate with a delay in disease progression during chronic infection. Using the Lysispot and ELISPOT assays, we measured the frequencies of cytotoxic and IFN-gamma-secreting T cells responding to overlapping peptides from Gag, Nef, Env, and Pol consensus HIV-1 clade B sequences. PBMC from the majority of HIV-infected subjects have significant frequencies of HIV-specific cells that killed targets within 5 h directly ex vivo. The relative frequencies of IFN-gamma-secreting and cytotoxic cells varied markedly between different HIV peptide pools within the same patient, and some T cells lysed targets without secreting IFN-gamma. These results indicate that measurement of IFN-gamma production alone may be insufficient to evaluate the breadth of the HIV-specific T cell response. Also, neither the CTL to IFN-gamma ratios nor the ex vivo CTL frequencies specific for different HIV proteins were consistently lower than responses specific for two other chronic viral infections, human CMV and EBV, within the same subjects. Thus ex vivo cytotoxic T cell frequencies do not provide evidence for a model of "preterminal differentiation" of HIV-specific CD8(+) T cells during chronic HIV infection. Analysis of the frequency of directly cytotoxic HIV-specific T cells may be of considerable value in the assessment of disease progression and the potential efficacy of HIV vaccines.  相似文献   

9.
The molecular pattern of the human immunodeficiency virus (HIV) epidemic in Argentina provides an appropriate scenario to study cellular immune responses in patients with non-clade B infection. We aimed to map T-cell responses in patients infected with BF recombinant variants and compare them with those of clade B patients. Sixteen recently infected patients were enrolled and grouped by viral subtype. Nef-specific responses were evaluated with a peptide matrix-based gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay using B and BF overlapping peptides. Cross-clade and clade-specific responses were found. A correlation between B versus BF Nef-specific responses was identified. Detailed analysis at the single-peptide level revealed that BF patients show a narrower response but greater magnitude. Nef immunodominant responses agreed with previous publications, although the B loop was targeted at an unexpectedly high frequency. The putative HLA allele(s) restricting each positive response was determined. Single-peptide level screening with two different peptide sets uncovered discordant responses (mostly caused by peptide offsetting) and allowed detection of increased breadth. Positive responses identified by ELISPOT assay were further studied by intracellular cytokine staining. These were almost exclusively mediated by CD8 T cells. Characterization of concordant responses revealed that cells show distinct functional profiles, depending on the peptide presented. Last, quality (in terms of polyfunctionality) of T cells was associated with better viral replication containment. Overall, interclade differences in the frequency of epitopes recognized, structural domains targeted, and magnitude of responses were identified. Screening T-cell responses with multiple sets increased sensitivity. Further support for the notion of polyfunctional CD8+ T-cell requirement to better control viral replication is also provided.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1)-infected individuals with HLA-B*35 allelic variants B*3502/3503/3504/5301 (B*35-Px) progress more rapidly to AIDS than do those with B*3501 (B*35-PY). The mechanisms responsible for this phenomenon are not clear. To examine whether cellular immune responses may differ according to HLA-B*35 genotype, we quantified HIV-1-specific CD8(+)-T-cell (CTL) responses using an intracellular cytokine-staining assay with specimens from 32 HIV-1-positive individuals who have B*35 alleles. Among them, 75% had CTL responses to Pol, 69% had CTL responses to Gag, 50% had CTL responses to Nef, and 41% had CTL responses to Env. The overall magnitude of CTL responses did not differ between patients bearing B*35-Px genotypes and those bearing B*35-PY genotypes. A higher percentage of Gag-specific CTL was associated with lower HIV-1 RNA levels (P = 0.009) in individuals with B*35-PY. A negative association between CTL activity for each of the four HIV antigens and viral load was observed among individuals with B*35-PY, and the association reached significance for Gag. No significant relationship between CTL activity and viral load was observed in the B*35-Px group. The relationship between total CTL activity and HIV RNA among B*35-Px carriers differed significantly from that among B*35-PY carriers (P < 0.05). The data are consistent with the hypothesis that higher levels of virus-specific CTL contribute to protection against HIV disease progression in infected individuals with B*35-PY, but not in those with B*35-Px.  相似文献   

11.
The primary influenza A virus-specific CD8(+)-T-cell responses measured by tetramer staining of spleen, lymph node, and bronchoalveolar lavage (BAL) lymphocyte populations were similar in magnitude for conventional I-A(b+/+) and CD4(+)-T-cell-deficient I-A(b-/-) mice. Comparable levels of virus-specific cytotoxic-T-lymphocyte activity were detected in the inflammatory exudate recovered by BAL following challenge. However, both the size of the memory T-cell pool and the magnitude of the recall response in the lymphoid tissues (but not the BAL specimens) were significantly diminished in mice lacking the CD4(+) subset. Also, the rate of virus elimination from the infected respiratory tract slowed at low virus loads following challenge of na?ve and previously immunized I-A(b-/-) mice. Thus, though the capacity to mediate the CD8(+)-T-cell effector function is broadly preserved in the absence of concurrent CD4(+)-T-cell help, both the maintenance and recall of memory are compromised and the clearance of residual virus is delayed. These findings are consistent with mathematical models that predict virus-host dynamics in this, and other, models of infection.  相似文献   

12.
HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8+ T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection.  相似文献   

13.
Immune responses to human immunodeficiency virus (HIV) are detected at all stages of infection and are believed to be responsible for controlling viremia. This study seeks to determine whether gamma interferon (IFN-gamma)-secreting HIV-specific T-cell responses influence disease progression as defined by the rate of CD4 decline. The study population consisted of 31 subjects naive to antiretroviral therapy. All were monitored clinically for a median of 24 months after the time they were tested for HIV-specific responses. The rate of CD4+-T-cell loss was calculated for all participants from monthly CD4 counts. Within this population, 17 subjects were classified as typical progressors, 6 subjects were classified as fast progressors, and 8 subjects were classified as slow progressors. Peripheral blood mononuclear cells were screened for HIV-specific IFN-gamma responses to all expressed HIV genes. Among the detected immune responses, 48% of the recognized peptides were encoded by Gag and 19% were encoded by Nef gene products. Neither the breadth nor the magnitude of HIV-specific responses correlated with the viral load or rate of CD4 decline. The breadth and magnitude of HIV-specific responses did not differ significantly among typical, fast, and slow progressors. These results support the conclusion that although diverse HIV-specific IFN-gamma-secreting responses are mounted during the asymptomatic phase, these responses do not seem to modulate disease progression rates.  相似文献   

14.
The HIV-1 regulatory proteins Tat and Rev and the accessory proteins Vpr, Vpu, and Vif are essential for viral replication, and their cytoplasmic production suggests that they should be processed for recognition by cytotoxic T lymphocytes. However, only limited data is available evaluating to which extent these proteins are targeted in natural infection and optimal cytotoxic T lymphocyte (CTL) epitopes within these proteins have not been defined. In this study, CTL responses against HIV-1 Tat, Rev, Vpr, Vpu, and Vif were analyzed in 70 HIV-1 infected individuals and 10 HIV-1 negative controls using overlapping peptides spanning the entire proteins. Peptide-specific interferon-gamma (IFN-gamma) production was measured by Elispot assay and flow-based intracellular cytokine quantification. HLA class I restriction and cytotoxic activity were confirmed after isolation of peptide-specific CD8+ T-cell lines. All regulatory and accessory proteins served as targets for HIV-1- specific CTL and multiple CTL epitopes were identified in functionally important regions of these proteins. In certain individuals HIV-1-specific CD8+ T-cell responses to these accessory and regulatory proteins contributed up to a third to the magnitude of the total HIV-1-specific CTL response. These data indicate that despite the small size of these proteins regulatory and accessory proteins are targeted by CTL in natural HIV-1 infection, and contribute importantly to the total HIV-1-specific CD8+ T-cell responses. These findings are relevant for the evaluation of the specificity and breadth of immune responses during acute and chronic#10; infection, and will be useful for the design and testing of candidate human immunodeficiency virus (HIV) vaccines.  相似文献   

15.
Gut-associated lymphoid tissue is the major reservoir of lymphocytes and human immunodeficiency virus type 1 (HIV-1) replication in vivo, yet little is known about HIV-1-specific CD8+ T-lymphocyte (CTL) responses in this compartment. Here we assessed the breadth and magnitude of HIV-1-specific CTL in the peripheral blood and sigmoid colon mucosa of infected subjects not on antiretroviral therapy by enzyme-linked immunospot analysis with 53 peptide pools spanning all viral proteins. Comparisons of blood and mucosal CTL revealed that the magnitude of pool-specific responses is correlated within each individual (mean r2 = 0.82 +/- 0.04) and across all individuals (r2 = 0.75; P < 0.001). Overall, 85.1% of screened peptide pools yielded concordant negative or positive results between compartments. CTL targeting was also closely related between blood and mucosa, with Nef being the most highly targeted (mean of 2.4 spot-forming cells [SFC[/10(6) CD8+ T lymphocytes/amino acid [SFC/CD8/aa]), followed by Gag (1.5 SFC/CD8/aa). Finally, comparisons of peptide pool responses seen in both blood and mucosa (concordant positives) versus those seen only in one but not the other (discordant positives) showed that most discordant results were likely an artifact of responses being near the limit of detection. Overall, these results indicate that HIV-1-specific CTL responses in the blood mirror those seen in the mucosal compartment in natural chronic infection. For protective or immunotherapeutic vaccination, it will be important to determine whether immunity is elicited in the mucosa, which is a key site of initial infection and subsequent HIV-1 replication in vivo.  相似文献   

16.
The evolution of peptide-specific CD4(+) T-cell responses to acute viral infections of humans is poorly understood. We analyzed the response to parvovirus B19 (B19), a ubiquitous and clinically significant pathogen with a compact and conserved genome. The magnitude and breadth of the CD4(+) T-cell response to the two B19 capsid proteins were investigated using a set of overlapping peptides and gamma interferon-specific enzyme-linked immunospot assays of peripheral blood mononuclear cells (PBMCs) from a cohort of acutely infected individuals who presented with acute arthropathy. These were compared to those for a cohort of B19-specific immunoglobulin M-negative (IgM(-)), IgG(+) remotely infected individuals. Both cohorts of individuals were found to make broad CD4(+) responses. However, while the responses following acute infection were detectable ex vivo, responses in remotely infected individuals were only detected after culture. One epitope (LASEESAFYVLEHSSFQLLG) was consistently targeted by both acutely (10/12) and remotely (6/7) infected individuals. This epitope was DRB1*1501 restricted, and a major histocompatibility complex peptide tetramer stained PBMCs from acutely infected individuals in the range of 0.003 to 0.042% of CD4(+) T cells. Tetramer-positive populations were initially CD62L(lo); unlike the case for B19-specific CD8(+) T-cell responses, however, CD62L was reexpressed at later times, as responses remained stable or declined slowly. This first identification of B19 CD4(+) T-cell epitopes, including a key immunodominant peptide, provides the tools to investigate the breadth, frequency, and functions of cellular responses to this virus in a range of specific clinical settings and gives an important reference point for analysis of peptide-specific CD4(+) T cells during acute and persistent virus infections of humans.  相似文献   

17.
We have attempted to develop an anti-human immunodeficiency virus (HIV) lipopeptide vaccine with several HIV-specific long peptides modified by C-terminal addition of a single palmitoyl chain. A mixture of six lipopeptides derived from regulatory or structural HIV-1 proteins (Nef, Gag, and Env) was prepared. A phase I study was conducted to evaluate immunogenicity and tolerance in lipopeptide vaccination of HIV-1-seronegative volunteers given three injections of either 100, 250, or 500 microg of each lipopeptide, with or without immunoadjuvant (QS21). This report analyzes in detail B- and T-cell responses induced by vaccination. The lipopeptide vaccine elicited strong and multiepitopic B- and T-cell responses. Vaccinated subjects produced specific immunoglobulin G antibodies that recognized the Nef and Gag proteins. After the third injection, helper CD4(+)-T-cell responses as well as specific cytotoxic CD8(+) T cells were also obtained. These CD8(+) T cells were able to recognize naturally processed viral proteins. Finally, specific gamma interferon-secreting CD8(+) T cells were also detected ex vivo.  相似文献   

18.
A clear understanding of the antiviral effects of CD8(+) T cells in the context of chronic human immunodeficiency virus (HIV) infection is critical for the development of prophylactic vaccines and therapeutics designed to support T-cell-mediated immunity. However, defining the potential correlates of effective CD8(+) T-cell immunity has proven difficult; notably, comprehensive analyses have demonstrated that the size and shape of the CD8(+) T-cell response are not necessarily indicative of efficacy determined by measures of plasma viral load. Here, we conducted a detailed quantitative and qualitative analysis of CD8(+) T-cell responses to autologous virus in a cohort of six HIV-infected individuals with a history of structured interruption of antiretroviral therapy (ART) (SIT). The magnitude and breadth of the HIV-specific response did not, by themselves, explain the changes observed in plasma virus levels after the cessation of ART. Furthermore, mutational escape from targeted epitopes could not account for the differential virological outcomes in this cohort. However, the functionality of HIV-specific CD8(+) T-cell populations upon antigen encounter, determined by the simultaneous and independent measurement of five CD8(+) T-cell functions (degranulation and gamma interferon, macrophage inflammatory protein 1beta, tumor necrosis factor alpha, and interleukin-2 levels) reflected the emergent level of plasma virus, with multiple functions being elicited in those individuals with lower levels of viremia after SIT. These data show that the quality of the HIV-specific CD8(+) T-cell response, rather than the quantity, is associated with the dynamics of viral replication in the absence of ART and suggest that the effects of SIT can be assessed by measuring the functional profile of HIV-specific CD8(+) T cells.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8(+) T cells provide an important defense in controlling HIV-1 replication, particularly following acquisition of infection. To delineate the breadth and potency of these responses in patients upon initial presentation and before treatment, we determined the fine specificities and frequencies of gamma interferon (IFN-gamma)-secreting CD8(+) T cells recognizing all HIV-1 proteins in patients with primary infection. In these subjects, the earliest detected responses were directed predominantly against Nef, Tat, Vpr, and Env. Tat- and Vpr-specific CD8(+) T cells accounted for the greatest frequencies of mean IFN-gamma spot-forming cells (SFC). Nef-specific responses (10 of 21) were more commonly detected. A mean of 2.3 epitopes were recognized with various avidities per subject, and the number increased with the duration of infection (R = 0.47, P = 0.031). The mean frequency of CD8(+) T cells (985 SFC/10(6) peripheral blood mononuclear cells) correlated with the number of epitopes recognized (R = 0.84, P < 0.0001) and the number of HLA-restricting alleles (R = 0.79, P < 0.0001). Neither the total SFC frequencies nor the number of epitopes recognized correlated with the concurrent plasma viral load. Seventeen novel epitopes were identified, four of which were restricted to HLA alleles (A23 and B72) that are common among African descendents. Thus, primary HIV-1 infection induces strong CD8(+)-T-cell immunity whose specificities broaden over time, but their frequencies and breadth do not correlate with HIV-1 containment when examined concurrently. Many novel epitopes, particularly directed to Nef, Tat, and Env, and frequently with unique HLA restrictions, merit further consideration in vaccine design.  相似文献   

20.
The accurate identification of HIV-specific T cell responses is important for determining the relationship between immune response, viral control, and disease progression. HIV-specific immune responses are usually measured using peptide sets based on consensus sequences, which frequently miss responses to regions where test set and infecting virus differ. In this study, we report the design of a peptide test set with significantly increased coverage of HIV sequence diversity by including alternative amino acids at variable positions during the peptide synthesis step. In an IFN-gamma ELISpot assay, these "toggled" peptides detected HIV-specific CD4(+) and CD8(+) T cell responses of significantly higher breadth and magnitude than matched consensus peptides. The observed increases were explained by a closer match of the toggled peptides to the autologous viral sequence. Toggled peptides therefore afford a cost-effective and significantly more complete view of the host immune response to HIV and are directly applicable to other variable pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号