首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2433篇
  免费   196篇
  国内免费   3篇
  2023年   18篇
  2022年   10篇
  2021年   93篇
  2020年   44篇
  2019年   69篇
  2018年   69篇
  2017年   60篇
  2016年   96篇
  2015年   153篇
  2014年   158篇
  2013年   185篇
  2012年   215篇
  2011年   185篇
  2010年   123篇
  2009年   99篇
  2008年   133篇
  2007年   120篇
  2006年   119篇
  2005年   91篇
  2004年   97篇
  2003年   74篇
  2002年   74篇
  2001年   31篇
  2000年   26篇
  1999年   26篇
  1998年   26篇
  1997年   17篇
  1995年   9篇
  1994年   12篇
  1993年   6篇
  1992年   9篇
  1991年   12篇
  1990年   18篇
  1989年   13篇
  1988年   13篇
  1987年   6篇
  1986年   8篇
  1985年   6篇
  1984年   9篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1979年   5篇
  1977年   6篇
  1975年   7篇
  1974年   7篇
  1972年   5篇
  1971年   6篇
  1970年   4篇
  1969年   7篇
排序方式: 共有2632条查询结果,搜索用时 93 毫秒
1.
Recent studies have shown that cells expressing neuronal antigens can be derived from a bone marrow transplant. A new report lends support to and extends these previous results by presenting compelling morphological evidence for the generation and integration of highly differentiated bone marrow-derived neurons.  相似文献   
2.
The removal of the 5′-cap structure by the decapping enzyme DCP2 and its coactivator DCP1 shuts down translation and exposes the mRNA to 5′-to-3′ exonucleolytic degradation by XRN1. Although yeast DCP1 and DCP2 directly interact, an additional factor, EDC4, promotes DCP1–DCP2 association in metazoan. Here, we elucidate how the human proteins interact to assemble an active decapping complex and how decapped mRNAs are handed over to XRN1. We show that EDC4 serves as a scaffold for complex assembly, providing binding sites for DCP1, DCP2 and XRN1. DCP2 and XRN1 bind simultaneously to the EDC4 C-terminal domain through short linear motifs (SLiMs). Additionally, DCP1 and DCP2 form direct but weak interactions that are facilitated by EDC4. Mutational and functional studies indicate that the docking of DCP1 and DCP2 on the EDC4 scaffold is a critical step for mRNA decapping in vivo. They also revealed a crucial role for a conserved asparagine–arginine containing loop (the NR-loop) in the DCP1 EVH1 domain in DCP2 activation. Our data indicate that DCP2 activation by DCP1 occurs preferentially on the EDC4 scaffold, which may serve to couple DCP2 activation by DCP1 with 5′-to-3′ mRNA degradation by XRN1 in human cells.  相似文献   
3.
Orobates pabsti, a basal diadectid from the lower Permian, is a key fossil for the understanding of early amniote evolution. Quantitative analysis of anatomical information suffers from fragmentation of fossil bones, plastic deformation due to diagenetic processes and fragile preservation within surrounding rock matrix, preventing further biomechanical investigation. Here we describe the steps taken to digitally reconstruct MNG 10181, the holotype specimen of Orobates pabsti, and subsequently use the digital reconstruction to assess body mass, position of the centre of mass in individual segments as well as the whole animal, and study joint mobility in the shoulder and hip joints. The shape of most fossil bone fragments could be recovered from micro-focus computed tomography scans. This also revealed structures that were hitherto hidden within the rock matrix. However, parts of the axial skeleton had to be modelled using relevant isolated bones from the same locality as templates. Based on the digital fossil, mass of MNG 10181 was estimated using a model of body shape that was varied within a plausible range to account for uncertainties of the dimension. In the mean estimate model the specimen had an estimated mass of circa 4 kg. Varying of the mass distribution amongst body segments further revealed that Orobates carried most of its weight on the hind limbs. Mostly unrestricted joint morphology further suggested that MNG 10181 was able to effectively generate propulsion with the pelvic limbs. The digital reconstruction is made available for future biomechanical studies.  相似文献   
4.
The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally “opens” CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.  相似文献   
5.
[Acyl CoA]monoacylglycerol acyltransferase 2 (MGAT2) is of interest as a target for therapeutic treatment of diabetes, obesity and other diseases which together constitute the metabolic syndrome. In this Letter we report our discovery and optimisation of a novel series of MGAT2 inhibitors. The development of the SAR of the series and a detailed discussion around some key parameters monitored and addressed during the lead generation phase will be given. The in vivo results from an oral lipid tolerance test (OLTT) using the MGAT2 inhibitor (S)-10, shows a significant reduction (68% inhibition relative to na?ve, p <0.01) in plasma triacylglycerol (TAG) concentration.  相似文献   
6.
7.
A continuous fluorescence assay was adapted to the measurement of the phospholipase reaction of lecithin cholesterol acyltransferase (LCAT). The fluorescent phospholipid 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl phosphatidylcholine (C6-NBD-PC) in micelle form reacted with LCAT to yield NBD-caproic acid, resulting in up to 5-fold increases in fluorescence in 30 min. The reaction rates were optimal in mixtures containing 0.1 M NaCl and 4 mM beta-mercaptoethanol at 37 degrees C. Apolipoprotein A-I did not activate the enzyme and bovine serum albumin bound monomeric substrate and interfered with the fluorescence assay. Under similar reaction conditions, bee venom phospholipase A2 was almost 100-fold more reactive than LCAT.  相似文献   
8.
The principal mechanism of H2O2 toxicity is thought to involve the generation of hydroxyl (HO.) radicals through its interactions with Fe2+ ions by the Fenton reaction. Of particular interest has been the demonstration by Ward, Blakely & Joner [(1985) Radiat. Res. 103, 383-392] that the cytotoxicity of H2O2 is diminished at low temperature. We have now examined this phenomenon further with a mammalian epithelial cell line (CNCMI-221). Resistance of these cells to 100 microM-H2O2 added extracellularly exhibits a transition in the temperature range between 27 degrees C and 22 degrees C. We have found that the low-temperature resistance to cytotoxic concentrations of H2O2 is abolished by preincubation of cells with reductants such as ascorbate or reduced lipoic acid. This implies that the low-temperature resistance to H2O2 cytotoxicity may be due to inhibition of cellular reductive processes. The restoration of the cytotoxic action of H2O2 at 4 degrees C by ascorbate is prevented by pre-exposure of cells to desferrioxamine. This is evidence that transition-metal ions (such as iron ions) are involved in the cytotoxicity and is consistent with a mechanism of cell damage that depends on the Fenton reaction and a metal ion in the reduced state. Restoration of H2O2 cytotoxicity at low temperature by ascorbate is consistent with the artificial production of an intracellular reducing environment that at normal temperatures is sustained by cellular metabolism.  相似文献   
9.
10.
Bacterial production and amino acid metabolism in aquatic systems can be estimated by simultaneous incubation of water samples with both tritiated methyl-thymidine and 14C-labeled amino acids. This dual-label method not only saves time, labor, and materials, but also allows determination of these two parameters in the same microbial subcommunity. Both organic carbon incorporation and respiration can be estimated. The results obtained with the dual-label technique are not significantly different from single-radiolabel methods over a wide range of bacterial activity. The method is particularly suitable for large-scale field programs and has been used successfully with eutrophic estuarine samples as well as with oligotrophic oceanic water. In the mesohaline portion of Chesapeake Bay, thymidine incorporation ranged seasonally from 2 to 635 pmol liter−1 h−1 and amino acid turnover rates ranged from 0.01 to 28.4% h−1. Comparison of thymidine incorporation with amino acid turnover measurements made at a deep, midbay station in 1985 suggested a close coupling between bacterial production and amino acid metabolism during most of the year. However, production-specific amino acid turnover rates increased dramatically in deep bay waters during the spring phytoplankton bloom, indicating transient decoupling of bacterial production from metabolism. Ecological features such as this are readily detectable with the dual-label method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号