首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  The first objective of the present study is to test the hypothesis that the decrease in the number of eupyrene spermatozoa in the spermatheca is directly associated with the resumption of sexual receptivity in female moths, an aspect that has not been examined in previous studies. The obliquebanded leafroller, Choristoneura rosaceana , is used and females mated with previously mated males have a shorter refractory period than those mated with virgins. This difference is associated with a faster rate of movement of sperm from the spermatheca. Overall, the length of the female refractory period coincides with the mean time required for the number of eupyrene sperm in the spermatheca to drop to approximately 3000, regardless of male mating history. Although such a decline in sperm numbers may be a factor responsible for the resumption of sexual receptivity, this is clearly not the only one because more than 40% of females remate even though sperm numbers in the spermatheca are well above this threshold. Virgin males do not vary the mass or the content of their ejaculate as a function of the female's reproductive status and this may increase the risk of sperm competition if the female is previously mated. The second objective of this study is to examine the effect of previous male mating history on female reproductive potential. Females mated with previously mated males have a significantly lower fecundity than those mated with virgin males. However, in all treatments, remating increases both female longevity and lifetime fecundity. There is also a significant effect of female mass on the length of the refractory period and on lifetime fecundity, with large females resuming sexual receptivity sooner and laying more eggs than small ones, regardless of male mating history.  相似文献   

2.
Theoretical models predict that males should allocate more sperm in matings where the immediate risk of sperm competition is high. It has therefore often been argued that males should invest less sperm in matings with virgin females compared with matings with already mated females. However, with relatively polyandrous females, high sperm competition risk will covary with high sperm competition intensity leading to more unpredictable conditions, as high competition intensity should favour smaller ejaculates. With the use of a genetic algorithm, we found that males should allocate more sperm in matings with virgin females when female mating frequency is relatively high, whereas low remating rates will select for higher effort in matings with nonvirgin females. At higher remating rates, first male sperm precedence favours larger ejaculates in matings with virgin females and second male precedence favours the reverse. These results shed some light on several findings that have been difficult to explain adaptively by the hitherto developed theory on sperm allocation.  相似文献   

3.
In insects, spermatophore production represents a non‐trivial cost to a male. Non‐virgin males have been shown to produce small spermatophores at subsequent matings. Particularly in monandrous species, it may be an issue to receive a sufficiently large spermatophore at the first and typically only mating. Females of the monandrous Speckled wood butterfly Pararge aegeria (L.) produce fewer offspring after mating with a non‐virgin male. After mating, females spend all their active time selecting oviposition sites and typically ignore other males. Here, we show that females did not discriminate between a virgin male and a recently mated male in our laboratory experiments. We demonstrate that the number of eupyrene sperm bundles relative to spermatophore mass differed with subsequent male matings. Males transferred a significantly smaller spermatophore after the first copulation, but the spermatophore mass did not decrease further with subsequent matings. However, the number of eupyrene sperm bundles decreased linearly. Therefore, there was proportionally more eupyrene sperm in the male’s second spermatophore compared with the first and the later spermatophores. Such a pattern has been shown in polyandrous species. Hence, it suggests that differences in sperm allocation strategy between polyandrous and monandrous butterflies may be quantitative rather than qualitative. There was also a tendency for females that had mated with a recently mated male to have higher propensity to remate than did females that had mated with a virgin male. We discuss the results relative to the mating system in P. aegeria, including female remating opportunities in the field and male mate‐locating behaviour.  相似文献   

4.
Sexual selection theory predicts that the different selection pressures on males and females result in sexual conflict. However, in some instances males and females share a common interest which could lead to sexual cooperation. In the pierid butterfly Pieris napi the male and the recently mated female share a common interest in reducing female harassment by other males soon after mating. Here we show that P. napi males transfer an anti-aphrodisiac to the female at mating, methyl-salicylate (MeS), which is a volatile substance which mated females emit when courted and which makes males quickly abandon them. A 13C-labelling experiment demonstrated that only males synthesize MeS. The effect of this antiaphrodisiac is so strong that most males will refrain from mating with virgin females to whom MeS has been artificially applied. In P. napi, males also transfer nutrients to females at mating. This increases female fecundity and longevity and so females benefit from remating. Hence, sexual cooperation gradually turns to conflict. Future research is required to reveal which sex controls the gradual decrease in the MeS titre which is necessary for allowing mated females to regain attractiveness and remate.  相似文献   

5.
Lepidopteran male mating success is recognized to be directly related to physical and behavioural traits such as ability, vigour, activity and persistence in courtship. In the tomato fruit borer Neoleucinodes elegantalis Guenée, the mating system is known to be monogamic and therefore males' sexual investment is apparently low. The hypothesis that recently mated males have a remating probability equal to that of virgin males is tested. The impact of body size in remating success and the cost of remating are also analyzed. Mated males show as much propensity to remate as naïve ones. Copula duration and the time taken to copulate are similar in mated and virgin males. However, spermatophore size is not related to male size. The results suggest the ability of N. elegantalis males to remate within 24 h between mating events and their propensity to remate are not affected by copula investment. © 2013 The Royal Entomological Society  相似文献   

6.
Much of sexual selection theory depends on assumptions about the genetic basis of variation in male mating success and sperm competitive ability. Despite intense interest in this topic, few genes have been identified that contribute to variation in these traits. Here we report the results of quantitative trait locus (QTL) analyses of mating success of male Drosophila melanogaster when exposed to virgin females, remating success of males with previously mated females, and both defense and offense components of sperm competition. We found two to four significant QTLs for remating success, but no QTLs for mating success, even though mating success was more genetically variable than remating success in the recombinant inbred lines used in this study. By combining these results with data from previous gene-expression experiments, we were able to identify three X-linked candidate genes for variation in remating ability. For two of these genes, QTL and expression data were completely concordant with respect to directionality of effects: high mating success was associated with high levels of gene expression and with beneficial QTL effects on the trait. We found equivocal evidence for genetic variation in sperm offense and defense in the recombinant inbred lines, and we did not find any significant QTLs for either sperm competition trait.  相似文献   

7.
The accessory gland protein (Acp) ejaculate molecules of male Drosophila melanogaster mediate sexual selection and sexual conflict at the molecular level. However, to date no studies have comprehensively measured the timing and magnitude of fitness benefits to males of transferring specific Acps. This is an important omission because without this information it is not possible to fully understand the strength and form of selection acting on adaptations such as Acps. Here, we measured the fitness benefits to males of ejaculate sex peptide (SP) transfer. SP is of interest because it is a candidate for mediating sexual conflict: its frequent receipt reduces female fitness. In single matings with virgin females SP is known to increase egg laying and decrease receptivity. Hence, we predicted that SP could: (i) boost a male’s absolute paternity by increasing offspring production and delaying female remating and/or (ii) boost relative paternity share. We tested these predictions using two different lines of SP‐lacking males, in both two‐mating and free‐mating assay conditions. SP transfer conferred higher absolute, but not relative, male reproductive success. In matings with virgin females, SP transfer increased mating productivity and delayed remating and hence the onset of sperm competition. In already mated females, SP transfer did not elevate absolute progeny production, but did increase intermating intervals and hence the period over which a male could gain paternity. Consistent with this, under free‐mating conditions over an extended period, we detected a ‘per‐mating’ fitness benefit for males transferring SP. These benefits are consistent with a role for SP in mediating conflict, with SP acting to maximize short‐term fitness benefits for males.  相似文献   

8.
Males of many insects eclose with their entire lifetime sperm supply and have to allocate their ejaculates at mating prudently. In polyandrous species, ejaculates of rival males overlap, creating sperm competition. Recent models suggest that males should increase their ejaculate expenditure when experiencing a high risk of sperm competition. Ejaculate expenditure is also predicted to vary in relation to sperm competition intensity. During high intensity, where several ejaculates compete for fertilization of the female''s eggs, ejaculate expenditure is expected to be reduced. This is because there are diminishing returns of providing more sperm. Additionally, sperm numbers will depend on males'' ability to assess female mating status. We investigate ejaculate allocation in the polyandrous small white butterfly Pieris rapae (Lepidoptera). Males have previously been found to ejaculate more sperm on their second mating when experiencing increased risk of sperm competition. Here we show that males also adjust the number of sperm ejaculated in relation to direct sperm competition. Mated males provide more sperm to females previously mated with mated males (i.e. when competing with many sperm) than to females previously mated to virgin males (competing with few sperm). Virgin males, on the other hand, do not adjust their ejaculate in relation to female mating history, but provide heavier females with more sperm. Although virgin males induce longer non-receptive periods in females than mated males, heavier females remate sooner. Virgin males may be responding to the higher risk of sperm competition by providing more sperm to heavier females. It is clear from this study that males are sensitive to factors affecting sperm competition risk, tailoring their ejaculates as predicted by recent theoretical models.  相似文献   

9.
Sexual conflicts due to divergent male and female interests in reproduction are common in parasitic Hymenoptera. The majority of parasitoid females are monandrous, whereas males are able to mate repeatedly. Thus, accepting only a single mate might be costly when females mate with a sperm‐depleted male, which may not transfer a sufficient amount of sperm. In the present study, we investigated the reproductive performance in the parasitoid Lariophagus distinguendus Först. (Hymenoptera: Pteromalidae) and studied whether mating with experimentally sperm‐depleted males increases the tendency of females to remate. Males were able to mate with up to 17 females offered in rapid succession within a 10‐h test period. The resulting female offspring, as an indirect measure of sperm transfer, remained constant during the first six matings and then decreased successively with increasing number of copulations by the males. Experimentally sperm‐depleted males continued to mate even if they transferred only small amounts or no sperm at all. Unlike males, the majority of females mated only once during a 192‐h test period. A second copulation was observed only in a few cases (maximum 16%). The frequency of remating was not influenced by the mating status of the first male the females had copulated with, suggesting that these events are not controlled by sperm deficiency of the females. Furthermore, we investigated male courtship behaviour towards mated females. Male courtship intensity towards mated females decreased with increasing time. However, females that had mated with an experimentally sperm‐depleted male did not elicit stronger or longer‐lasting behavioural responses in courting males than those that had mated with a virgin male. As the observed behaviours in L. distinguendus are known to be elicited by a courtship pheromone, these results suggest that females no longer invest in pheromone biosynthesis after mating (as indicated by ceasing behavioural responses of courting males), irrespective of whether they have received a sufficient amount of sperm or not. We discuss the results with respect to a possible mating strategy of sperm‐depleted males.  相似文献   

10.
Methoprene (an analogue of juvenile hormone) application and feeding on a protein diet is known to enhance male melon fly, Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), mating success. In this study, we investigated the effect of these treatments on male B. cucurbitae's ability to inhibit female remating. While 14‐d‐old females were fed on protein diet, 6‐d‐old males were exposed to one of the following treatments: (i) topical application of methoprene and fed on a protein diet; (ii) no methoprene but fed on a protein diet; (iii) methoprene and sugar‐fed only; and (iv) sugar‐fed, 14‐d‐old males acted as controls. Treatments had no effect on a male's ability to depress the female remating receptivity in comparison to the control. Females mated with protein‐deprived males showed higher remating receptivity than females first mated with protein‐fed males. Methoprene and protein diet interaction had a positive effect on male mating success during the first and second mating of females. Significantly more females first mated with sugar‐fed males remated with protein‐fed males and females first mated with methoprene treated and protein‐fed males were more likely to remate with similarly treated males. Females mating latency (time to start mating) was significantly shorter with protein‐fed males, and mating duration was significantly longer with protein‐fed males compared with protein‐deprived males. These results are discussed in the context of methoprene and/or dietary protein as prerelease treatment of sterile males in area‐wide control of melon fly integrating the sterile insect technique (SIT).  相似文献   

11.
When both sexes mate with multiple partners, theory predicts that males should adjust their investment in ejaculates in response to the risk and/or intensity of sperm competition. Here, we demonstrate that, in the harlequin beetle riding pseudoscorpion, Cordylochernes scorpioides, males use cues deposited on females by previous males to distinguish between virgin, once‐mated, and multiply‐mated females and adjust sperm allocation accordingly. Sperm number declined in direct proportion to the number of previous males, with virgin females receiving nearly three times more sperm than females exposed to three previous males. Given the lack of first‐male sperm precedence in C. scorpioides, this pattern is not consistent with current sperm competition models and appears best explained by a significant risk of wasting ejaculates on deceitful, mated females. In C. scorpioides, males transfer sperm indirectly to females via a stalked spermatophore deposited on the substrate. Mated females often feign sexual receptivity and cooperate throughout mating, only to reject the sperm packet produced by the male. While indirect sperm transfer facilitates a high level of female deceit and control, females of many species are able to influence the number and fate of sperm transferred during copulation and are likely to conceal their sexual unreceptivity to minimize male retaliation. If males cannot accurately assess female receptivity, increased risk of sperm rejection by mated females could outweigh the risk of sperm competition and favor greater sperm allocation to virgin females.  相似文献   

12.
Mate choice for novel partners should evolve when remating with males of varying genetic quality provides females with fitness‐enhancing benefits. We investigated sequential mate choice for same or novel mating partners in females of the cellar spider Pholcus phalangioides (Pholcidae) to understand what drives female remating in this system. Pholcus phalangioides females are moderately polyandrous and show reluctance to remating, but double‐mated females benefit from a higher oviposition probability compared to single‐mated females. We exposed mated females to either their former (same male) or a novel mating partner and assessed mating success together with courtship and copulatory behaviours in both sexes. We found clear evidence for mate discrimination: females experienced three‐fold higher remating probabilities with novel males, being more often aggressive towards former males and accepting novel males faster in the second than in the first mating trial. The preference for novel males suggests that remating is driven by benefits derived from multiple partners. The low remating rates and the strong last male sperm precedence in this system suggest that mating with novel partners that represent alternative genotypes may be a means for selecting against a former mate of lower quality.  相似文献   

13.
Reproductive success of male insects commonly hinges both on their ability to secure copulations with many mates and also on their ability to inseminate and inhibit subsequent sexual receptivity of their mates to rival males. We here present the first investigation of sperm storage in Queensland fruit flies (Tephritidae: Bactrocera tryoni; a.k.a. 'Q-flies') and address the question of whether remating inhibition in females is directly influenced by or correlated with number of sperm stored from their first mates. We used irradiation to disrupt spermatogenesis and thereby experimentally reduce the number of sperm stored by some male's mates while leaving other aspects of male sexual performance (mating probability, latency until copulating, copula duration) unaffected. Females that mated with irradiated rather than normal males were less likely to store any sperm at all (50% vs. 89%) and, if some sperm were stored, the number was greatly reduced (median 11 vs. 120). Despite the considerable differences in sperm storage, females mated by normal males and irradiated males were similarly likely to remate at the next opportunity, indicating (1) number of sperm stored does not directly drive female remating inhibition and (2) factors actually responsible for remating inhibition are similarly expressed in normal and irradiated males. While overall levels of remating were similar for mates of normal and irradiated males, factors responsible for female remating inhibition were positively associated with presence and number of sperm stored by mates of normal but not irradiated males. We suggest seminal fluids as the most likely factor responsible for remating inhibition in female Q-flies, as these are likely to be transported in proportion to number of sperm in normal males, be uninfluenced by irradiation, and be transported without systematic relation to sperm number in irradiated males.  相似文献   

14.
Whether and how individuals choose sequentially among matesis an important but largely neglected aspect in sexual selectionstudies. Here, we explore female remating behavior in the cellarspider Pholcus phalangioides. We focus on body size as one ofthe most important traits involved in mate choice. Large andsmall females (n = 216) were double mated with large or smallmales in all eight possible combinations. All females copulatedwhen virgin, but only 82% accepted a second male. The chanceof a female remating was not significantly predicted by thebody size of the second or first male or by the size differencebetween the two. In contrast, a previous study demonstrateda male size effect in that larger males monopolized femalesuntil egg laying when two males of different sizes were present.We suggest that sequential encounters are more common undernatural conditions than male monopolization of females becauseestimates of concurrent multiple paternity together with observationsin a natural population do not favor mate guarding as the predominantmating strategy in this species. It follows from our study thatthe intensity of sexual selection on male size may be greatlyoverestimated when using a competitive laboratory setting fora species in which females generally encounter mates in a sequentialfashion. Female remating probability was significantly predictedby female size, with large females remating with higher probabilitythan small females. Thus, when mating with large females, malesmay gain higher fertilization success through increased femalefecundity but also face a higher sperm competition risk.  相似文献   

15.
Female mating rate is fundamental to evolutionary biology as it determines the pattern of sexual selection and sexual conflict. Despite its importance, the genetic basis for female remating rate is largely unknown and has only been demonstrated in one species. In paternally investing species there is often a conflict between the sexes over female mating rate, as females remate to obtain male nutrient donations and males try to prevent female remating to ensure high fertilization success. Butterflies produce two types of sperm: fertilizing, eupyrene sperm, and large numbers of nonfertile, apyrene sperm. The function of apyrene sperm in the polyandrous, paternally investing green‐veined white butterfly, Pieris napi, is to fill the female’s sperm storage organ thereby reducing her receptivity. However, there is large variation in number of apyrene sperm stored. Here, I examine the genetic basis to this variation, and if variation in number of apyrene sperm stored is related to females’ remating rate. The number of apyrene sperm stored at the time of remating has a genetic component and is correlated with female remating tendency, whereas no such relationship is found for fertilizing sperm. The duration of the nonreceptivity period in P. napi also has a genetic component and is inversely related to the degree of polyandry. Sexual conflict over female remating rate appears to be present in this species, with males using their apyrene sperm to exploit a female system designed to monitor sperm in storage. Ejaculates with a high proportion of nonfertile sperm may have evolved to induce females to store more of these sperm, thereby reducing remating. As a counter‐adaptation, females have evolved a better detection system to regain control over their remating rate. Sexually antagonistic co‐evolution of apyrene sperm number and female sperm storage may be responsible for ejaculates with predominantly nonfertile sperm in this butterfly.  相似文献   

16.
The role of male body size in postmating sexual selection wasexplored in a semiaquatic insect, the water strider Gerris lateralis.To separate effects of male size per se from those due to numericsperm competition, male recovery period (shown here to be proportionalto ejaculate size) was manipulated independently of body sizein a factorial experiment where virgin females were mated firstwith sterile males and then with focal males. Both relativemale fertilization success and female reproductive rate were measured.The number of sperm transferred increased with male recoveryperiod, an effect that was mediated by longer copulation duration,but there were no effects of body size on ejaculate size. Neithermale size nor recovery period had any significant direct effectson male fertilization success. However, copulation durationinfluenced relative fertilization success, suggesting that malesable to transfer more sperm also achieved higher fertilizationsuccess. Females exercised cryptic female choice by modulatingtheir reproductive rate in a manner favoring large males andmales that were successful in terms of achieving high relativefertilization success. Thus, successful males gained a twofoldadvantage in postmating sexual selection. This study has important implicationsfor previous estimates of sexual selection in this group of insectsbecause pre- and postmating sexual selection will be antagonisticdue to limitations in male sperm production: males mating frequently(high mating success) will on average transfer fewer sperm ineach mating and will hence tend to fertilize fewer eggs permating (low fertilization success).  相似文献   

17.
Female remating in target pest species can affect the efficacy of control methods such as the Sterile Insect Technique (SIT) but very little is known about the postcopulatory mating behavior of these pests. In this study, we investigated the remating behavior of female Anastrepha serpentina (Diptera: Tephritidae), an oligophagous pest of Sapotaceae. First, we tested how long the sexual refractory period of females lasted after an initial mating. Second, we tested the effect of male and female sterility, female ovipositing opportunities and male density on female propensity to remate. Lastly, we tested if the amount of sperm stored by females was correlated to the likelihood of females to remate. We found that receptivity of mass-reared A. serpentina females had a bimodal response, with up to 16% of mass-reared A. serpentina females remating five days after the initial copulation, decreasing to 2% at 10 and 15 days and increasing to 13% after 20 days. Compared to fertile males, sterile males were less likely to mate and less likely to inhibit females from remating. Copula duration of sterile males was shorter compared to fertile males. Remating females were less likely to mate with a sterile male as a second mate. Sterile females were less likely to mate or remate compared to fertile females. Opportunity to oviposit and male density had no effect on female remating probability. Sperm numbers were not correlated with female likelihood to remate. Information on the post-copulatory behavior of mass-reared A. serpentina will aid fruit fly managers in improving the quality of sterile males. We discuss our results in terms of the differences this species presents in female remating behavior compared to other tephritids.  相似文献   

18.
Male and female age are important factors that can influence mating and remating behavior. Females can discriminate against or prefer older males, but there have been relatively fewer studies on how female and male age influence female remating. Here we showed in wild flies of the Mexican fruit fly Anastrepha ludens (Loew), that when females were given a choice between males of different ages, younger females preferred to mate with younger males over older males, while older females were less selective. Also, when given a choice between males of different ages, older females had longer copulation durations than younger females. On the other hand, older males and females had lower mating success, compared with young and middle-aged flies under no choice conditions. However, middle-aged females mated faster compared to young females and young males mated faster compared to middle-aged males. Male age did not influence female remating, while female age strongly determined female remating, with no females remating when they were old. It is unclear if female receptivity mechanisms are switched off at older ages, or if females are reluctant to remate due to possible costs of mating. We discuss our results in terms of how male and female age can influence mating decisions.  相似文献   

19.
In most species, both sexes may mate with more than one partner during their life. In terrestrial isopods (woodlice) female remating can occur within a reproductive season (immediate remating) or after a period of sexual rest and sperm storage, that is in a subsequent reproductive season (delayed remating). The pattern of sperm precedence is unknown in both cases. These two female remating patterns may shape male-male competition in different ways. To elucidate both patterns of female remating and sperm precedence, we used an albinism mutation in Armadillidium vulgare to track paternity in laboratory experiments. Males had low remating success after immediate remating attempts, mainly because of the female's refractory behaviour. However, refractory behaviour seemed to be lost after female sexual rest: delayed remating attempts were as successful as first mating attempts with virgin females. In both immediate and delayed remating, competing males had similar fertilization success, but varied in sperm precedence. We hypothesize that males might induce the refractory mating behaviour in females to ensure their paternity. This could be a strategy that evolved in woodlice after the loss of precopulatory mate guarding during adaptation to the terrestrial environment. We discuss the consequences of these findings for woodlice optimal mating strategies. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

20.
Sterile insect technique (SIT) is used, among other biological control tools, as a sustainable measure for the management of Ceratitis capitata Wiedemann (Diptera: Tephritidae) in many agricultural regions where this pest can trigger severe economic impacts. The tendency of wild females to remate multiple times has been deeply studied; it has been a common point of controversy when evaluating SIT programmes. Nevertheless, the remating potential of the released sterile males remains unknown. Here, under laboratory conditions, the remating capability of mass-reared sterile males was determined. Wild-type virgin females were offered to sterile males (Vienna-8 strain), which had the opportunity to mate up to four consecutive times. The remating assays were carried out at 24 hr, 48 hr, 4 days and 7 days after the first mating. At the end of each tested time period, males were divided according to their mating response, mated or unmated, and subsequently reused for the next round of mating assays. The frequency of successful remating in each tested time period was obtained. Insemination was confirmed by determining the sperm transfer in mated female spermathecae by quantitative real-time PCR. Our results demonstrate that 73% of the mass-reared sterile males were able to remate 24 hr after the first mating, 55% of which remated again the day after. Close to 25% of the V8 sterile males tended to copulate in all of the four mating opportunities. The qPCR analysis of the spermathecae contents verified an effective transfer of V8 sperm to wild females with every mating; 99% of copulations resulted in sperm transfer. These findings shed light on the remating potential of V8 sterile males, an aspect until now underestimated in many SIT programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号