首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The mass of the spermatophore transferred by a previously mated Choristoneura rosaceana male increases with time elapsed since the last mating but, even after 4 days, it never reaches the mass of the spermatophore of a virgin male. However, spermatophore mass is clearly not a good indicator of the male reproductive investment as the quantity of sperm in the second ejaculate of a previously mated male is the same as that of his first, if he is allowed a 2 (eupyrene sperm) to 3 day (apyrene sperm) recovery period. The interval between the first two matings had no influence on female fecundity or longevity but significantly affected fertility if the male had only 1 day to recover. The length of the post-copulatory refractory period was also shorter in females mated with previously mated males than in those mated with virgins, regardless of the male's remating interval. Furthermore, a significant variation in the eupyrene sperm content of the spermatophore transferred by virgin males had no influence on the length of the female refractory period. Globally, these results support the hypothesis that a factor, other than sperm numbers in the spermatheca, is responsible for maintaining the inhibition of pheromone production in this species.  相似文献   

2.
In polyandrous insect species, males may transfer substances to reduce sperm competition by affecting female sexual receptivity. In this study, we determined the incidence of polyandry in females of Western bean cutworm (WBC), Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), and investigated the influence of both previous female and male mating history on the duration of mating, the female refractory period, and subsequent calling behavior of females under controlled laboratory conditions. The mating status of WBC males influenced mating duration, with copulations involving previously mated males taking longer, possibly related to the time required to produce an ejaculate. The duration of the female refractory period and the onset time of recalling during the scotophase were both affected by female mating history, but not by that of the males. Females had a shorter refractory period and resumed calling activity earlier after their second and third matings than after their first mating. The earlier onset of calling by previously mated females could reduce competition with virgin females and their shorter refractory period could explain the high incidence of polyandry observed in nature.  相似文献   

3.
In the oblique-banded leafroller, Choristoneura rosaceana, and the spruce budworm, C. fumiferana, male reproductive performance decreases with consecutive matings. While the onset time of mating did not vary, the time spent mating was longer in mated than in virgin males. Furthermore, a decline observed in the spermatophore mass with successive matings was associated with a concomitant decline in its apyrene and eupyrene spermatozoa content. In the hours following mating, spermatozoa migrate from the spermatophore, located in the bursa copulatrix, to the spermatheca. Regardless of the male's previous mating history, the number of apyrene sperm dropped rapidly in the days following mating whereas the number of eupyrene spermatozoa declined gradually. As the temporal pattern of sperm movement was similar in all treatments, females mated with previously-mated males would suffer from sperm shortage sooner than those mated with virgins. Large C. rosaceana females stored more apyrene spermatozoa in their spermatheca than small ones, irrespective of the time after mating or male mating history, while only large females mated with once-mated males received more apyrene sperm and accessory gland secretions than small ones mated with virgin or twice-mated males. The results obtained in this study are discussed in relation with their potential impact on the reproductive success of both sexes.  相似文献   

4.
Female tobacco budworm moths, Heliothis virescens, generally mate with more than one male, receiving from each mate both fertilizing sperm (eupyrene) and nonfertilizing anucleate sperm (apyrene), which is thought to play a role in sperm competition. One male typically gains sperm precedence, but it is not consistently the last or the first male to mate. I investigated the mechanism of this variable pattern of paternity by examining the patterns of storage of both types of sperm in the female's spermatheca as a function of multiple mating and male phenotype. The number of stored apyrene sperm varied with mating history, being greatest in twice-mated females and least in females mated to one nonvirgin male. In contrast, only one ejaculate's worth of eupyrene sperm was stored regardless of female mating history (once or twice mated). Thus, while they store two complements of apyrene sperm, twice-mated females apparently store only one ejaculate's worth of eupyrene sperm. This biased pattern of sperm storage may contribute to the variable pattern of paternity observed in this species. Eupyrene sperm storage also correlated positively with female size, male age and spermatophore size. Finally, a new sperm storage site was identified and described. It is a bulged region in the seminal duct. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

5.
Abstract. Mating behaviour, sperm transfer and sperm precedence were studied in the moth Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae). There existed a rhythmic, diel pattern of mating behaviour of this moth during the scotophase, presumably set with respect to an endogenous activity rhythm. Approximately 30 min after copulation had started, the formation of the corpus of the spermatophore began in the bursa copulatrix of the female moth, but full inflation of the corpus was not completed until 45–60 min after mating had started. The mature spermatophore contained about 350 eupyrene sperm bundles and a large number of individual (loose) apyrene spermatozoa. The mating status and the age of the male insect influenced the number of sperm transferred to the female within the spermatophore, and also affected the consequent fertility. There was no evidence of sperm reflux within the male tract. Within the female, dissociation of eupyrene sperm bundles was evident within the spermatophore less than 15 min after the completion of mating. Spermatozoa began to move from the bursa (in which the spermatophore is lodged) into the spermatheca 30–45 min after the end of the copulation, and the quantity of sperm in the spermatheca reached a plateau at 90 min after mating. Apyrene sperm reached the spermatheca first, followed by eupyrene sperm. Examination of total (apyrene plus eupyrene) sperm in the female tract showed that 86% of mated females received an apparently normal amount of total sperm from the male. Examination of eupyrene sperm alone showed that 81% of matings resulted in an apparently normal transfer of eupyrene sperm. A small proportion (approximately 8%) of the matings, however, were identified as transferring a clearly subnormal quantity of eupyrene sperm to the spermatheca. The eggs produced as a result of such pairings displayed much reduced fertility (about 43%) compared to those from matings confirmed to have transferred normal quantities of sperm, which showed about 92% fertility. This shows that the availability of eupyrene sperm in the spermatheca may be an important constraint on fertility in normal populations of insects. In the laboratory, S. litura females exhibited multiple matings. Of the females, 93% mated, and the mean frequency of mating was 1.69. Mating with a fertile male led to the oviposition of an increased number of eggs. This effect continued even when the female subsequently mated with an infertile male. Displacement of sperm from previous matings is known to be an important factor in the evolution of multiple mating strategies. Our results on sperm utilization by S. litura indicated that after a second mating, the sperm utilized for subsequent fertilization were almost exclusively from the last mating with little mixing. The proportion of eggs fertilized by sperm from the second mating (P2) was calculated as 0.95, indicating almost complete sperm precedence from the last mating.  相似文献   

6.
Males of the sorghum plant bug, Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae), transfer a spermatophore to females during copulation. After a 1‐day interval between the first and second copulation, males transferred both sperm and a spermatophore to females during the second copulation. However, when male mating interval was <1 h, they transferred sperm but no spermatophores to females during the second copulation. Therefore, the male mating interval probably produces two types of mated females, those with and those without a spermatophore. Mated females of S. rubrovittatus do not remate for at least 3 days after mating, even when courted, and lay more eggs than virgin females at the beginning of the oviposition period. The effects of spermatophores on female sexual receptivity and fecundity were examined using mated females with or without a spermatophore. Only one of the 40 (2.5%) mated females with a spermatophore remated, whereas 10 of the 26 (38.5%) without a spermatophore remated. Furthermore, mated females with a spermatophore laid more eggs than those without a spermatophore. These results suggest that spermatophores participate in reducing female sexual receptivity and enhancing female fecundity in S. rubrovittatus.  相似文献   

7.
In mating of the dobsonfly, Protohermes grandis (Thunberg), the male attaches the spermatophore externally to the female genitalia. The spermatophore includes a large gelatinous mass which the female detaches and feeds on after mating. While the female consumes this nuptial food gift, sperm is evacuated from the remaining portion of the spermatophore (sperm package) into her reproductive tract. Under laboratory conditions, mated females maintained receptivity throughout their lifetime, and they remated even on the day following copulation. A single insemination may supply enough sperm, as females mated only once deposited fertile eggs throughout life and, when dissected after death, all females had sperm in the spermatheca. There was a positive correlation between longevity and the number of matings. Lifetime fecundity also increased as mating multiplied. However, the size of eggs and hatchlings was not influenced by the number of matings. It seems that large spermatophore consumption by female P. grandis provides nutrients that increase fitness not in offspring quality, but in their quantity.  相似文献   

8.
A consequence of multiple mating by females can be that the sperm of two or more males directly compete for the fertilisation of ova inside the female reproductive tract. Selection through sperm-competition favours males that protect their sperm against that of rivals and strategically allocate their sperm, e.g., according to the mating status of the female and the morphology of the spermatheca. In the majority of spiders, we encounter the otherwise unusual situation that females possess two independent insemination ducts, both ending in their own sperm storage organ, the spermatheca. Males have paired mating organs, but generally can only fill one spermatheca at a time. We investigated whether males of the African golden orb-web spider Nephila madagascariensis can prevent rival males from mating into the same spermatheca and whether the mating status of the female and/or the spermatheca causes differences in male mating behaviour. There was no significant difference in the duration of copulations into unused spermathecae of virgin and mated females. We found that copulations into previously inseminated spermathecae were generally possible, but shorter than copulations into the unused side of mated females or with virgins. Thus, male N. madagascariensis may have an advantage when they mate with virgins, but cannot prevent future males from mating. However, in rare instances, parts of the male genitals can completely obstruct a female genital opening.  相似文献   

9.
In promiscuously mating species, there is strong selection on males to maximize their share of paternity through both defensive and offensive means. This has been most extensively examined using the Drosophila melanogaster model system. In these studies, sperm competition has been examined by mating a virgin female to two consecutive males and then determining the fertilization success of both the first male (defending, P1) and the second male (offending, P2). Recent evidence suggests that male defense may be influenced by female mating history (i.e., virgin versus nonvirgin). Here, by mating females to males with three different genotypes, we show that female mating history does not affect male defensive or offensive abilities in sperm competition. We also show that, although female lifetime fecundity was not correlated with the number of times that she mated, it was reduced by increased exposure to males. These data indicate that measures of P1 and P2 previously reported in D. melanogaster may be robust to the specific mating history of the females used in these studies.  相似文献   

10.
In yellow mealworm beetles (Tenebrio molitor), females are sexually receptive throughout their adult lives. We examined how access to mates affected female fecundity by varying the number of matings per female and quantifying cumulative egg production. Also, we dissected females at successive intervals after a single mating to assess the relationship among time since mating, sperm supplies, egg load, and oviposition rate. Females that mated at intervals greater than 2 days did not produce as many eggs as females that mated every 2 days or were allowed to mate ad libitum. Dissections showed that the amount of sperm remaining in a female spermatheca was correlated with the number of eggs she had laid recently, which suggests sperm replenishment as the material benefit gained through multiple mating. However, females mate more frequently than necessary for sperm replenishment, and therefore material benefits alone may not fully explain the continuous receptivity of T. molitor females.  相似文献   

11.
Females of the swallowtail butterfly Papilio xuthus L. (Lepidoptera: Papilionidae) mate multiply during their life span and use the spermatophores transferred to increase their longevity as well as fecundity. Sperm from different males may be stored in the sperm storage organs (bursa copulatrix and spermatheca). To clarify the pattern of sperm storage and migration in the reproductive tract, mated females are dissected after various intervals subsequent to the first mating, and the type and activity of sperm in the spermatheca are observed. When virgin females are mated with virgin males, the females store sperm in the spermatheca for more than 10 days. Sperm displacement is found in females that are remated 7 days after the first mating. Immediately after remating, these females flush out the sperm of the first male from the spermatheca before sperm migration of the second male has started. However, females receiving a small spermatophore at the second mating show little sperm displacement, and the sperm derived from the small spermatophore might not be able to enter the spermatheca. Females appear to use spermatophore size to monitor male quality.  相似文献   

12.
Divergent reproductive interests of males and females often cause sexual conflict . Males of many species manipulate females by transferring seminal fluids that boost female short-term fecundity while decreasing their life expectancy and future reproductivity . The life history of ants, however, is expected to reduce sexual conflict; whereas most insect females show repeated phases of mating and reproduction, ant queens mate only during a short period early in life and undergo a lifelong commitment to their mates by storing sperm . Furthermore, sexual offspring can only be reared after a sterile worker force has been built up . Therefore, the males should also profit from a long female lifespan. In the ant Cardiocondyla obscurior, mating indeed has a positive effect on the lifetime reproductive success of queens. Queens that mated to either one fertile or one sterilized male lived considerably longer and started laying eggs earlier than virgin queens. Only queens that received viable sperm from fertile males showed increased fecundity. The lack of a trade-off between fecundity and longevity is unexpected, given evolutionary theories of aging . Our data instead reveal the existence of sexual cooperation in ants.  相似文献   

13.
The outcome of mate choice depends on complex interactions between males and females both before and after copulation. Although the competition between males for access to mates and premating choice by females are relatively well understood, the nature of interactions between cryptic female choice and male sperm competition within the female reproductive tract is less clear. Understanding the complexity of postcopulatory sexual selection requires an understanding of how anatomy, physiology and behaviour mediate sperm transfer and storage within multiply mated females. Here we use a newly developed molecular technique to directly quantify mixed sperm stores in multiple mating females of the black field cricket, Teleogryllus commodus. In this species, female postcopulatory choice is easily observed and manipulated as females delay the removal of the spermatophore in favour of preferred males. Using twice‐mated females, we find that the proportion of sperm in the spermatheca attributed to the second male to mate with a female (S2) increases linearly with the time of spermatophore attachment. Moreover, we show that the insemination success of a male increases with its attractiveness and decreases with the size of the female. The effect of male attractiveness in this context suggests a previously unknown episode of mate choice in this species that reinforces the sexual selection imposed by premating choice and conflicts with the outcome of postmating male harassment. Our results provide some of the clearest evidence yet for how sperm transfer and displacement in multiply mated females can lead directly to cryptic female choice, and that three distinct periods of sexual selection operate in black field crickets.  相似文献   

14.
Models of age-related mate choice predict female preference for older males as they have proven survival ability. However, these models rarely address differences in sperm age and male mating history when evaluating the potential benefits to females from older partners. We used a novel experimental design to assess simultaneously the relative importance of these three parameters in the hide beetle, Dermestes maculatus. In a two-part experiment we first explored age-related male mating success and subsequently examined the consequences of male age, sperm age and male mating history on female fecundity and fertilization success. In a competitive mating environment, intermediate-age males gained significantly higher mating success than younger or older males. To test the consequences for females of aged-related male mating success, a second set of females were mated to males varying in age (young, intermediate-age and old), in numbers of matings and in timing of the most recent mating. We found that male age had a significant impact on female fecundity and fertilization success. Females mated to intermediate-age males laid more eggs and attained consistently higher levels of fertilization success than females with young and old mates. A male's previous mating history determined his current reproductive effort; virgin males spent longer in copula than males with prior mating opportunities. However, differences in copulation duration did not translate into increased fecundity or fertilization success. There was also little evidence to suggest that fertilization success was dependent on the age of a male's sperm. The experiment highlights the potential direct benefits accrued by females through mating with particular aged males. Such benefits are largely ignored by traditional viability models of age-related male mating success.  相似文献   

15.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

16.
FEMALES RECEIVE A LIFE-SPAN BENEFIT FROM MALE EJACULATES IN A FIELD CRICKET   总被引:7,自引:0,他引:7  
Abstract.— Mating has been found to be costly for females of some species because of toxic products that males transfer to females in their seminal fluid. Such mating costs seem paradoxical, particularly for species in which females mate more frequently than is necessary to fertilize their eggs. Indeed, some studies suggest that females may benefit from mating more frequently. The effect of male ejaculates on female life span and lifetime fecundity was experimentally tested in the variable field cricket, Gryllus lineaticeps. In field crickets, females will mate repeatedly with a given male and mate with multiple males. Females that were experimentally mated either repeatedly or multiply lived more than 32% longer than singly mated females. In addition, multiply mated females produced 98% more eggs than singly mated females. Because females received only sperm and seminal fluid from males in the experimental matings, these life‐span and fecundity benefits may result from beneficial seminal fluid products that males transfer to females during mating. Mating benefits rather than mating costs may be common in many animals, particularly in species where female mate choice has a larger effect on male reproductive success than does the outcome of sperm competition.  相似文献   

17.
The mating of the Neotropical lycosid Schizocosa malitiosa is long and complex, involving intense genital stimulation and copulatory courtship. This suggests functions other than just insemination. Previous data indicated that mated females of this species are less sexually receptive than virgins. We hypothesise that copulatory characteristics presented by males during prolonged copulations could be responsible for subsequent female sexual reluctance, and may be selected by cryptic female choice. Our objective was to examine the influence of copulatory behaviour on subsequent female sexual receptivity in S. malitiosa, isolating it from the effects of sperm transfer per se. For this purpose, we obtained males without sperm in their copulatory organs (palpal bulbs), and prevented them from charging their palps by sealing their genital pores immediately after their last moult (treated males). Virgin females were separated into three groups: (i) females exposed once to normal males, (ii) females exposed twice to normal males, and (iii) females exposed first to treated and second to normal males. The results showed that, 3 d after their first mating, females first mated with untreated males were frequently refractory to remating, whereas all those first mated with treated males were receptive. Copulations performed by treated males showed some differences from those performed by normal males, but maintained the basic behavioural pattern with abundant sexual stimulation. The presence of sperm fluids in the female receptacles appears to be the most likely factor generating female remating reluctance. Males may manipulate female responses using receptivity inhibiting substances in their sperm, like those described for insects. Females would first ensure sperm supply, becoming more choosy afterwards. All females, whether mated once or twice, generated similar numbers of progeny, indicating no relationship between number of matings and number of spiderlings.  相似文献   

18.
A large body size is considered to be advantageous to the reproductive success of females as a result of several factors, such as the allocation of more resources to reproduction and the efficient management of sperm transferred by males. In the present study, the effects of female body size, female mating status and additional food availability on fecundity and the offspring sex ratio are investigated in the parasitoid wasp Anisopteromalus calandrae Howard (Hymenoptera: Pteromalidae). Because of haplodiploid sex determination, females must fertilize eggs to produce female offspring but not to produce male offspring. As predicted, female fecundity and the number of female offspring are positively correlated with body size. However, although the volume of the spermatheca increases with female body size, the amount of sperm stored in the spermatheca is relatively constant, irrespective of body size. Consequently, larger females produce a greater proportion of male offspring, especially at the end of the oviposition sequence, suggesting that larger females that possess more resources for reproduction and produce a larger number of offspring are more likely to suffer sperm depletion. The results of the present study also show that mated females have an increased fecundity compared with virgin females, although the opportunity to feed on honey along with host feeding has no impact upon fecundity or the sex ratio.  相似文献   

19.
When both sexes mate with multiple partners, theory predicts that males should adjust their investment in ejaculates in response to the risk and/or intensity of sperm competition. Here, we demonstrate that, in the harlequin beetle riding pseudoscorpion, Cordylochernes scorpioides, males use cues deposited on females by previous males to distinguish between virgin, once‐mated, and multiply‐mated females and adjust sperm allocation accordingly. Sperm number declined in direct proportion to the number of previous males, with virgin females receiving nearly three times more sperm than females exposed to three previous males. Given the lack of first‐male sperm precedence in C. scorpioides, this pattern is not consistent with current sperm competition models and appears best explained by a significant risk of wasting ejaculates on deceitful, mated females. In C. scorpioides, males transfer sperm indirectly to females via a stalked spermatophore deposited on the substrate. Mated females often feign sexual receptivity and cooperate throughout mating, only to reject the sperm packet produced by the male. While indirect sperm transfer facilitates a high level of female deceit and control, females of many species are able to influence the number and fate of sperm transferred during copulation and are likely to conceal their sexual unreceptivity to minimize male retaliation. If males cannot accurately assess female receptivity, increased risk of sperm rejection by mated females could outweigh the risk of sperm competition and favor greater sperm allocation to virgin females.  相似文献   

20.
In insects, spermatophore production represents a non‐trivial cost to a male. Non‐virgin males have been shown to produce small spermatophores at subsequent matings. Particularly in monandrous species, it may be an issue to receive a sufficiently large spermatophore at the first and typically only mating. Females of the monandrous Speckled wood butterfly Pararge aegeria (L.) produce fewer offspring after mating with a non‐virgin male. After mating, females spend all their active time selecting oviposition sites and typically ignore other males. Here, we show that females did not discriminate between a virgin male and a recently mated male in our laboratory experiments. We demonstrate that the number of eupyrene sperm bundles relative to spermatophore mass differed with subsequent male matings. Males transferred a significantly smaller spermatophore after the first copulation, but the spermatophore mass did not decrease further with subsequent matings. However, the number of eupyrene sperm bundles decreased linearly. Therefore, there was proportionally more eupyrene sperm in the male’s second spermatophore compared with the first and the later spermatophores. Such a pattern has been shown in polyandrous species. Hence, it suggests that differences in sperm allocation strategy between polyandrous and monandrous butterflies may be quantitative rather than qualitative. There was also a tendency for females that had mated with a recently mated male to have higher propensity to remate than did females that had mated with a virgin male. We discuss the results relative to the mating system in P. aegeria, including female remating opportunities in the field and male mate‐locating behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号