首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   11篇
  2021年   1篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   9篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1988年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
1.
2.
Two related species may mate readily yet rarely form hybrid zygotes. Such cryptic reproductive isolation may occur as a result of conspecific sperm precedence, suggesting that postmating sexual selection is a key process in speciation. However, demonstrating conspecific sperm precedence is nontrivial, and several methodological problems may confound the results of such studies. By mating females to conspecific and heterospecific males of varying degree of relatedness, we established the existence of conspecific sperm precedence in flour beetles, Tribolium spp. Postmating incompatibilities seem to accumulate rapidly in this group of insects, and we discuss the implications of our findings for the influence of postmating sexual selection on speciation.  相似文献   
3.
When males provide females with resources at mating, they can become the limiting sex in reproduction, in extreme cases leading to the reversal of typical courtship roles. The evolution of male provisioning is thought to be driven by male reproductive competition and selection for female fecundity enhancement. We used experimental evolution under male‐ or female‐biased sex ratios and limited or unlimited food regimes to investigate the relative roles of these routes to male provisioning in a sex role‐reversed beetle, Megabruchidius tonkineus, where males provide females with nutritious ejaculates. Males evolving under male‐biased sex ratios transferred larger ejaculates than did males from female‐biased populations, demonstrating a sizeable role for reproductive competition in the evolution of male provisioning. Although larger ejaculates elevated female lifetime offspring production, we found little evidence of selection for larger ejaculates via fecundity enhancement: males evolving under resource‐limited and unlimited conditions did not differ in mean ejaculate size. Resource limitation did, however, affect the evolution of conditional ejaculate allocation. Our results suggest that the resource provisioning that underpins sex role reversal in this system is the result of male–male reproductive competition rather than of direct selection for males to enhance female fecundity.  相似文献   
4.
Theory predicts that sexual reproduction can increase population viability relative to asexual reproduction by allowing sexual selection in males to remove deleterious mutations from the population without large demographic costs. This requires that selection acts more strongly in males than females and that mutations affecting male reproductive success have pleiotropic effects on population productivity, but empirical support for these assumptions is mixed. We used the seed beetle Callosobruchus maculatus to implement a three‐generation breeding design where we induced mutations via ionizing radiation (IR) in the F0 generation and measured mutational effects (relative to nonirradiated controls) on an estimate of population productivity in the F1 and effects on sex‐specific competitive lifetime reproductive success (LRS) in the F2. Regardless of whether mutations were induced via F0 males or females, they had strong negative effects on male LRS, but a nonsignificant influence on female LRS, suggesting that selection is more efficient in removing deleterious alleles in males. Moreover, mutations had seemingly shared effects on population productivity and competitive LRS in both sexes. Thus, our results lend support to the hypothesis that strong sexual selection on males can act to remove the mutation load on population viability, thereby offering a benefit to sexual reproduction.  相似文献   
5.
Studies of phenotypic selection in natural populations are often concerned with simply detecting selection. In adopting a more mechanistic approach, this study compares the sexual selection regimes in natural populations of the water strider Gerris odontogaster with a priori predictions of selection, based on a number of previous field and laboratory studies of the behavioral mechanisms of selection. In this species, a general reluctance of females to mate allows for intersexual selection for ability to subdue reluctant females in males. Female reluctance to mate has been shown to decrease with increasing population density, suggesting that sexual selection should be weaker in high density populations. Three different populations with large differences in population density were studied. A number of traits including parasite load, body mass, body size and male abdominal process length were found to experience significant sexual selection. The investigated populations differed considerably with regard to the total strength of selection on the measured traits and the form of selection on single traits. In general, males in the population with the highest density experienced the weakest selection for grasping ability. This pattern is ascribed to density-related alterations of female mating behavior. Selection for male grasping ability, as reflected by selection on male abdominal process length, is reduced in high-density populations where reluctant females are more easily subdued. Further, the studied populations differed significantly in mean phenotype and phenotypic variance for male abdominal process length. It is suggested that interpopulational differences in selective regimes may generate local adaptations with respect to male abdominal process length, and that gene flow may contribute to the maintenance of the high genetic variation in this trait. It is further suggested that more empirical effort should be made in quantifying and understanding spatial and temporal variation in selection in natural populations, since this may provide information on the prevalence of local adaptations in metric traits and on the mechanisms of selection.  相似文献   
6.
The evolution of male mate choice is constrained by costs of choice in species with a male‐biased operational sex ratio (OSR). Previous theoretical studies have shown that significant benefits of male choice are required, for example, by mating with more fecund females, in order for these costs to be offset and a male preference to spread. In a series of population genetic models we show the novel effect that male mating preference, expressed as a bias in courtship, can spread when females prefer, and thus are more likely to mate with, males who court more. We explore two female preference functions for levels of male courtship, one representing a threshold and the other a weighted female preference. The basic finding generally holds for both preference functions. However, the preference function greatly affects the spread of a male preference allele after the addition of competing males who can court more in total. Our results thus stress that a thorough understanding of the response of females to male courtship is a critical component to understanding male preference evolution in polygynous species.  相似文献   
7.
Sexual selection can lead to rapid divergence in reproductive characters. Recent studies have indicated that postmating events, such as sperm precedence, may play a key role in speciation. Here, we stress that other components of postmating sexual selection may be involved in the evolution of reproductive isolation. One of these is the reproductive investment made by females after mating (i.e., differential allocation). We performed an experiment designed to assess genetic divergence in the effects of mating on female reproductive performance in flour beetles, Tribolium castaneum. Females were mated to males of three different wild-type genotypes at two different frequencies, in all possible reciprocal combinations. Male genotype affected all aspects of female reproduction, through its effects on female longevity, total offspring production, reproductive rate, mating rate, and fertility. Moreover, male and female genotype interacted in their effects on offspring production and reproductive rate. We use the pattern of these interactions to discuss the evolutionary process of divergence and suggest that the pattern is most consistent with that expected if divergence was driven by sexually antagonistic coevolution. In particular, the fact that females exhibited a relatively weak response to males with which they were coevolved suggests that females have evolved resistance to male gonadotropic signals/stimuli.  相似文献   
8.
The evolution of female mate choice by sexual conflict   总被引:15,自引:0,他引:15  
Although empirical evidence has shown that many male traits have evolved via sexual selection by female mate choice, our understanding of the adaptive value of female mating preferences is still very incomplete. It has recently been suggested that female mate choice may result from females evolving resistance rather than attraction to males, but this has been disputed. Here, we develop a quantitative genetic model showing that sexual conflict over mating indeed results in the joint evolution of costly female mate choice and exaggerated male traits under a wide range of circumstances. In contrast to tradition explanations of costly female mate choice, which rely on indirect genetic benefits, our model shows that mate choice can be generated as a side-effect of females evolving to reduce the direct costs of mating.  相似文献   
9.
The emergent field of evolutionary biology that studies disparities between the evolutionary interests of alleles expressed in the two sexes, or sexual conflict, promises to offer novel insights into male-female coevolution and speciation. Our theoretical understanding of basic concepts is, however, still incomplete. In a recent perspective paper, Pizzari and Snook provided a framework for understanding sexually antagonistic coevolution and for distinguishing this process from other models of male-female coevolution and suggested an experimental protocol to test for sexually antagonistic coevolution. Here, I show that the framework is flawed, primarily because it is built upon the mistaken assumption that male and female fitness can evolve independently. Further, while the empirical strategy advocated has indeed offered important insights in the past, it does not allow unambiguous discrimination between competing hypotheses.  相似文献   
10.
Rapid divergence of male genitalia is one of the most general evolutionary trends in animals with internal fertilization, but the mechanisms of genital evolution are poorly understood. The current study represents the first comprehensive attempt to test the main hypotheses that have been suggested to account for genital evolution (the lock-and-key, sexual selection and pleiotropy hypotheses) with intraspecific data. We measure multivariate phenotypic selection in a water strider species, by relating five different components of fitness (mating frequency, fecundity, egg hatching rate, offspring survival rate and offspring growth rate) to a suite of genital and non-genital morphological traits (in total 48). Body size had a series of direct effects in both sexes. Large size in females was positively related to both fecundity and egg hatching rate. There was positive sexual selection for large size in males (mating frequency), which to some extent was offset by a reduced number of eggs laid by females mated to large males. Male genitalic morphology influenced male mating frequency, but the detected directional selection on genitalia was due to indirect selection on phenotypically correlated non-intromittent traits. Further, we found no assortative mating between male intromittent genitalia and female morphology. Neither did we find any indications of male genitalia conveying information of male genetic quality. Several new insights can be gained from our study. Most importantly, our results are in stark disagreement with the long standing lock-and-key hypothesis of genital evolution, as well as with certain models of sexual selection. Our results are, however, in agreement with other models of sexual selection as well as with the pleiotropy hypothesis of genital evolution. Fluctuating asymmetry of bilaterally symmetrical traits, genital as well as non-genital, had few effects on fitness. Females with low fluctuating asymmetry in leg length produced offspring with a higher survival rate, a pattern most proba bly caused by direct phenotypic maternal effects. We also discuss the relevance of our results to sexual conflict over mating, and the evolution of sexual traits by coevolutionary arms races between the sexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号