首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Comparative effects of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on lateral root (LR) formation were studied using 2-day-old seedlings of IR8 rice (Oryza sativa L.). Results showed that IBA at all concentrations (0.8–500 nmol/L) increased the number of LRs in the seminal root. However exogenous IAA, failed to increase the number of LRs. On the other hand, both IBA and IAA caused inhibition of seminal root elongation and promotion of LR elongation, but IAA can only reach to the same degree of that of IBA at a more than 20-fold concentration. Exogenous IBA had no effect on endogenous IAA content. We conclude from the results that IBA could act directly as a distinct auxin, promoting LR formation in rice, and that the signal transduction pathway for IBA is at least partially different from that for IAA.  相似文献   

3.
Negative phototropism of rice root and its influencing factors   总被引:8,自引:0,他引:8  
Some characteristics of the rice (Oryza sativa L.) root were found in the experiment of unilaterally irradiating the roots which were planted in water: (i) All the seminal roots, adventitious roots and their branched roots bent away from light, and their curvatures ranged from 25℃ to 60℃. The curvature of adventitious root of the higher node was often larger than that of the lower node, and even larger than that of the seminal root. (ii) The negative phototropic bending of the rice root was mainly due to the larger growth increment of root-tip cells of the irradiated side compared with that of the shaded side, (iii) Root cap was the site of light perception. If root cap was shaded while the root was irradiated the root showed no negative phototropism, and the root lost the characteristic of negative phototropism when root cap was divested. Rice root could resume the characteristic of negative phototropism when the new root cap grew up, if the original cells of root cap were well protected while root ca  相似文献   

4.
A comparative analysis of the effects of anoxia on growth, fresh weight gain, and phytohormones in wheat (Triticum aestivum L.) and rice (Oryza sativa L.) seedlings was performed. In both plant species, a total cessation of root growth occurred during the initial hours of anoxia. In an anaerobic environment, the fresh weight of wheat seedlings decreased. An increase in the shoot length and weight under the stress conditions was found only in rice seedlings. During the initial hours of anoxia, the level of free ABA in wheat and rice tissues increased manifold, and the accumulation of a free ABA form occurred at the expense of the hydrolysis of its bound forms. The IAA content in plant tissues also increased. In wheat, the accumulation of IAA was short, but in rice, a high hormone level was retained during the entire experiment, and, as a result, its concentration exceeded that of ABA. A level of cytokinins in the tissues of both plant species was affected by anoxia to a lesser extent than that of other phytohormones. This level somewhat decreased under anoxia similarly to the level in darkness under aeration. It is suggested that IAA accumulation in hypoxia-tolerant rice seedlings under anoxia favors maintenance of shoot growth and simultaneous inhibition of root growth. At the same time, in the hypoxia-sensitive wheat, an increase in the ABA level resulted in growth cessation.  相似文献   

5.
The dual effects of auxin and ethylene on rice seminal root growth were investigated in this study. Low concentrations of exogenous indole-3-acetic acid (IAA) had no effect on rice seminal root growth, whereas higher concentrations (≥0.003 μM) were inhibitory. In contrast, low concentrations of the auxin action inhibitor p-chlorophenoxyisobutyric acid (PCIB), ranging from 0.5 to 50 μM, promoted rice seminal root growth, whereas high concentrations of PCIB (≥500 μM) and the polar auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibited rice seminal root growth. These results suggest that endogenous auxin is required but supraoptimal for rapid growth of rice seminal roots. In addition, although rice seminal root growth was inhibited by the exogenous ethylene-releasing compound ethephon or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) as well as exogenous IAA, the 50% inhibition of growth (I50) caused by ethephon or ACC was weakened by certain concentrations of the ethylene action inhibitor Ag+ (0.016-0.4 μM). However, the I50 caused by exogenous IAA was strengthened by Ag+ or the ethylene biosynthetic inhibitor aminoethoxyvinylglycine (AVG) and weakened by certain concentrations of PCIB (0.5-50 μM). Together, the inhibitory mechanisms of auxin and ethylene on rice seminal root growth should be different, and auxin inhibition of rice seminal root growth should not be caused by ethylene. Furthermore, our results indicated that a certain threshold level of ethylene was required to maintain rice seminal root growth, and that ethylene within the threshold may antagonize auxin inhibition of rice seminal root growth.  相似文献   

6.
鸭子品种间的差异对稻鸭共生系统中水稻的生长特性可能有重要影响.为了探究鸭子品种对水稻生长特性的影响,选取水鸭(SY)、洋鸭(YY)和绿头鸭(LTY)3个常见鸭品种作为处理,以水稻常规单作(CK)为对照,采用随机区组设计的方法进行田间小区试验,研究其对水稻根部、茎部、叶部性状及水稻产量的影响.结果 表明:YY和LTY处理...  相似文献   

7.
Some characteristics of the rice (Oryza sativa L.) root were found in the experiment of unilaterally irradiating the roots which were planted in water: (i) All the seminal roots, adventitious roots and their branched roots bent away from light, and their curvatures ranged from 25° to 60°. The curvature of adventitious root of the higher node was often larger than that of the lower node, and even larger than that of the seminal root, (ii) The negative phototropic bending of the rice root was mainly due to the larger growth increment of root-tip cells of the irradiated side compared with that of the shaded side, (iii) Root cap was the site of light perception. If root cap was shaded while the root was irradiated the root showed no negative phototropism, and the root lost the characteristic of negative phototropism when root cap was divested. Rice root could resume the characteristic of negative phototropism when the new root cap grew up, if the original cells of root cap were well protected while root cap was divested, (iv) The growth increment and curvature of rice root were both influenced by light intensity. Within the range of 0–100 μmol · m2 -s−1, the increasing of light intensity resulted in the decreasing of the growth increment and the increasing of the curvature of rice root, (v) The growth increment and the curvature reached the maximum at 30°C with the temperature treatment of 10–40°C. (vi) Blue-violet light could prominently induce the negative phototropism of rice root, while red light had no such effect. (vii) The auxin (IAA) in the solution, as a very prominent influencing factor, inhibited the growth, the negative phototropism and the gravitropism of rice root when the concentration of IAA increased. The response of negative phototropism of rice root disappeared when the concentration of IAA was above 10 mg · L−1  相似文献   

8.
Heat stress severely reduces rice yield and quality; however, differences between the superior, early-flowering and inferior, later-flowering spikelets of indica rice in response to high-temperature stress during grain filling remain unclear. This study investigated the effects of high temperature (HT, 33.6/20.7 °C day/night) on growth, endosperm structure, and hormone and polyamine content of superior and inferior spikelets of heat-sensitive (SG-1) and heat-tolerant (HHZ) indica cultivars. The HT decreased fertilization rate, caused earlier grain filling, and reduced duration of grain filling, thus resulting in decreased grain mass and a poor endosperm structure. In addition, soluble sugar and sucrose content increased, and starch synthesis decreased by HT at the early stage of grain filling. The HT increased polyamine [spermidine (Spd) and spermine (Spm)] and abscisic acid (ABA) content, but reduced zeatin (Z) + zeatin riboside (ZR) and indole-3-acetic acid (IAA) content in the grains. Such effects were more apparent in the inferior than superior spikelets; however, the inferior spikelets of SG-1 were more affected than those of HHZ. At the middle grain filling stage, HT produced little difference between the two cultivars. Our results suggest that the poor development of inferior spikelets of SG-1 under the HT could be attributed, at least in part, to the changed content and ratios of free polyamines [putrescine (Put), Spd, and Spm] and phytohormones (Z+ZR, IAA, and ABA) and the conversion efficiency of sucrose into starch.  相似文献   

9.
【目的】通过小鼠的急性毒性、30 d喂养及细菌移位试验,对马奶及其制品(酸马奶)中分离出来的7株肠球菌属乳酸菌进行初步安全性评价。【方法】分别对小鼠连续7 d及30 d灌胃不同剂量的肠球菌JHZ9、JHZ15、JHZ17、JHZ22、JHZ25、JHZ28、JNN1,对其一般体征进行观察,记录体重和食物摄入量,最后进行大体解剖,观察肝、肾、脾、心、肺并称重,同时进行细菌移位试验。【结果】除30 d喂养中,试验菌株JHZ17的高剂量组与生理盐水组差异显著(P0.05),7 d急性毒性试验及30 d喂养试验中各试验组小鼠体重、食物摄入量与对照组相比无显著性差异(P0.05),30 d喂养后小鼠各脏器(心、肝、脾、肺、肾)指标与对照组无显著性差异(P0.05),小鼠的经口急性毒性最大耐受剂量(MTD)大于1010 CFU/(mL bw)20 mL/(kg·d),属无毒级别,未发现细菌移位现象。【结论】肠球菌JHZ9、JHZ15、JHZ17、JHZ22、JHZ25、JHZ28、JNN1安全,无毒副作用。  相似文献   

10.
Two contrasting rice (Oryza sativa L.) cultivars, i.e. Wuyujing 3 (WYJ3, Cd-tolerant) and Shanyou 63 (SY63, Cd-sensitive), were grown on a red soil (Ultisol) to study both individual and combined phytotoxicity of arsenic (As) and cadmium (Cd) in terms of Cd and As availability, their uptake and accumulation, antioxidant defense activity and oxidative damage. The antioxidant defense system examined in this study included enzymatic and non-enzymatic molecular antioxidants such as superoxide dismutase (SOD), peroxidase (POD), glutathione (GSH) and ascorbic acid (AsA). Results showed that As or Cd treatment decreased root and shoot biomass in both cultivars compared with their corresponding control (no Cd or As treatment), although less severe inhibition of plant growth was observed in WYJ3 than in SY63. Moreover, rice growth was inhibited more severely by Cd treatment than by As treatment, which could be explained by the higher amount of available Cd (60%) (0.1 M HCl-extractable Cd) compared to the lower amount of available As (15%) (0.5 M NaH2PO4-extractable As) in their postharvest soils. However, shoot biomass in cultivar SY63, and root and shoot biomass in cultivar WYJ3 were significantly higher in the As plus Cd treatment than in the Cd treatment alone, showing that the combined toxicity of these two heavy metals was not additive and on the contrary, As mitigated Cd-induced growth inhibition. The As plus Cd treatment also significantly decreased As or Cd concentrations both in roots and in shoots of the two rice cultivars compared with the As or Cd treatment alone, respectively. On the other hand, treatment with As or Cd alone significantly decreased the SOD and POD activities, and GSH and AsA concentrations, while the activities of these enzymes and the concentrations of GSH and AsA were significantly higher in the As plus Cd treatment than in the Cd treatment alone, resulting in less severe oxidative damage as indicated by the lower concentration of MDA in the As plus Cd treatment (P < 0.05). However, no significant difference was observed in the antioxidant defense activity between the As plus Cd treatment and the As treatment alone. These results suggest that the combined toxicity of As and Cd in rice is lower than that of individual Cd or As, which might be attributed to the decreased uptake and accumulation of Cd and As, and the less oxidative stress caused by the interactive effects of As with Cd both in rhizosphere and in plants.  相似文献   

11.
There is increasing evidence for graphene associated plant growth promotion, however, the chronic effects of soil-applied graphene remain largely unexplored. The present study investigated the morphological, physiological and biochemical responses of graphene oxide (GO) on Aloe vera L. over the concentration range of 0–100 mg/L for four months. Our results demonstrated that GO, with the best efficiency at 50 mg/L, could enhance the photosynthetic capacity of leaves, increase the yield and morphological characters of root and leaf, improve the nutrient (protein and amino acid) contents of leaf, without reducing the content of the main bioactive compound aloin. Compared with leaves, the effect of GO on root growth was more obvious. Although the electrolyte leakage and MDA content were raised at high concentrations, GO treatment did not increase the root antioxidant enzymes activity or decrease the root vigor, which excluding typical stress response. Furthermore, injection experiments showed that the GO in vivo did not change the plant growth state obviously. Taken together, our study revealed the role of GO in promoting Aloe vera growth by stimulating root growth and photosynthesis, which would provide theory basis for GO application in agriculture and forestry.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00979-3.  相似文献   

12.

Indole-3-acetic acid (IAA) and gibberellic acid (GA3) are essential for the growth and development of plants. In the present study, the ameliorative potential of these phytohormones on growth, protein content, and antioxidant enzymes was investigated in in vitro-grown Solanum tuberosum L. cultivars ‘Cardinal’ and ‘Desiree’ under salt stress. A 4 × 3 factorial combination of 0, 40, 60, or 80 mM NaCl with 0, 7, or 14 μM IAA, or 0, 14, or 21 μM GA3, were added to Murashige and Skoog (MS) basal medium, followed by inoculation of nodal explants or callus cultures. The data for root and shoot number and length, number of nodes and leaves, fresh weight of plants, increase or decrease in fresh weight of callus cultures, total soluble protein, and superoxide dismutase (SOD) and peroxidase (POD) activities were recorded after 30 d. The growth of both callus cultures and nodal explants subjected to NaCl stress was substantially reduced compared with the control. Both IAA and GA3 successfully alleviated the harmful effects of salt stress on all of the growth parameters studied. Salt stress resulted in decreased protein content, which increased when the media also contained phytohormones. The activities of SOD and POD were increased with either IAA or GA3 under NaCl stress. Therefore, the exogenous application of both IAA and GA3 not only played a positive role in terms of in vitro potato growth but also significantly affected the biochemical parameters tested.

  相似文献   

13.
Weeds are one of the major constraints in oilseed Brassica production. Use of effective herbicides to control weeds in the fields is one of the major objectives of agronomists. To improve weed control efficacy and minimize the application costs, complex combinations of 5-aminolevulinic acid (ALA) and a new postemergence herbicide, propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273), were used to investigate their combined effects in relation to seedling growth and development of oilseed rape (Brassica napus cv. ZS 758). Brassica seeds were treated with different concentrations of ZJ0273 [100 (normal dose for rape), 200, 500, and 1000 mg/L] and ALA (0.1, 1, 10, and 50 mg/L). ALA was applied as pre- and post-treatment alone and in combination with ZJ0273. We found that ZJ0273 stress imposed negative effects on rape seedling growth. Shoot fresh weight, shoot length, and root fresh weight were inhibited significantly under ZJ0273 stress, and the rate of decline increased consistently with increased ZJ0273 concentration. Root oxidizability was also inhibited significantly under ZJ0273 stress conditions, and the higher the concentration of the herbicide ZJ0273, the lower the oxidizability. Herbicide ZJ0273 treatment produced a gradual decrease in antioxidant enzymes (peroxidase, superoxide dismutase, and ascorbate peroxidase) and an increase in peroxidation substance (malondialdehyde accumulation). The increase and decrease were consistent with the ZJ0273 dosage. Our results indicated that pre- and post-treatments with a lower dosage of ALA (1 mg/L) improved rape seedling growth and root oxidizability parameters, whereas a higher concentration of ALA (50 mg/L) depressed growth. We also found that plants treated with 1 mg/L ALA produced the highest shoot fresh weights, shoot lengths, root fresh weights, and root oxidizability when the seeds were treated with different concentrations of ZJ0273. Lower dosages of ALA improved the activities of antioxidant enzymes, whereas the highest dosage of ALA increased the accumulation of peroxidation substance. These results indicate that ALA has promotive effects in the recovery of growth and development of rape seedlings under herbicide ZJ0273 toxicity stress.  相似文献   

14.
The plant hormone auxin has been shown to be involved in lateral root development and application of auxins, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), increases the number of lateral roots in several plants. We found that the effects of two auxins on lateral root development in the indica rice (Oryza sativa L. cv. IR8) were totally different from each other depending on the application method. When the roots were incubated with an auxin solution, IAA inhibited lateral root development, while IBA was stimulatory. In contrast, when auxin was applied to the shoot, IAA promoted lateral root formation, while IBA did not. The transport of [3H]IAA from shoot to root occurred efficiently (% transported compared to supplied) but that of [3H]IBA did not, which is consistent with the stimulatory effect of IAA on lateral root production when applied to the shoot. The auxin action of IBA has been suggested to be due to its conversion to IAA. However, in rice IAA competitively inhibited the stimulatory effect of IBA on lateral root formation when they were applied to the incubation solution, suggesting that the stimulatory effect of IBA on lateral root development is not through its conversion to IAA.  相似文献   

15.
16.
Two contrasting rice (Oryza sativa L.) cultivars, i.e. Wuyujing 3 (WYJ3, Cd-tolerant) and Shanyou 63 (SY63, Cd-sensitive), were grown on a red soil (Ultisol) to study both individual and combined phytotoxicity of arsenic (As) and cadmium (Cd) in terms of Cd and As availability, their uptake and accumulation, antioxidant defense activity and oxidative damage. The antioxidant defense system examined in this study included enzymatic and non-enzymatic molecular antioxidants such as superoxide dismutase (SOD), peroxidase (POD), glutathione (GSH) and ascorbic acid (AsA). Results showed that As or Cd treatment decreased root and shoot biomass in both cultivars compared with their corresponding control (no Cd or As treatment), although less severe inhibition of plant growth was observed in WYJ3 than in SY63. Moreover, rice growth was inhibited more severely by Cd treatment than by As treatment, which could be explained by the higher amount of available Cd (60%) (0.1 M HCl-extractable Cd) compared to the lower amount of available As (15%) (0.5 M NaH2PO4-extractable As) in their postharvest soils. However, shoot biomass in cultivar SY63, and root and shoot biomass in cultivar WYJ3 were significantly higher in the As plus Cd treatment than in the Cd treatment alone, showing that the combined toxicity of these two heavy metals was not additive and on the contrary, As mitigated Cd-induced growth inhibition. The As plus Cd treatment also significantly decreased As or Cd concentrations both in roots and in shoots of the two rice cultivars compared with the As or Cd treatment alone, respectively. On the other hand, treatment with As or Cd alone significantly decreased the SOD and POD activities, and GSH and AsA concentrations, while the activities of these enzymes and the concentrations of GSH and AsA were significantly higher in the As plus Cd treatment than in the Cd treatment alone, resulting in less severe oxidative damage as indicated by the lower concentration of MDA in the As plus Cd treatment (P < 0.05). However, no significant difference was observed in the antioxidant defense activity between the As plus Cd treatment and the As treatment alone. These results suggest that the combined toxicity of As and Cd in rice is lower than that of individual Cd or As, which might be attributed to the decreased uptake and accumulation of Cd and As, and the less oxidative stress caused by the interactive effects of As with Cd both in rhizosphere and in plants.  相似文献   

17.

Many methodologies have been established to lessen negative impacts of salinity on plants. Of those methodologies, nanoparticles (NPs) application has achieved great importance thanks to their unique physico-chemical properties. Consequently, formerly respecting encouraging impacts of graphene oxide (GO) and proline (Pro) on different plant processes under non-stress and stress conditions, proline-functionalized graphene oxide nanoparticles “GO–Pro NPs” were synthesized and characterized. Graphite powder, as starting material, was used to synthesize GO using modified Hummers method followed by functionalization of its surface by proline in basic media. Afterward, GO–Pro NPs, GO and Pro, each at 0, 50 and 100 mg L?1 concentrations with three replications, were applied on Moldavian balm (Dracocephalum moldavica L.) plants to assay their effects under non-stress (0 mM) and salt stress (50 and 100 mM) conditions. GO–Pro NPs and Pro effectively alleviated negative effects of salinity through increasing morphological parameters, photosynthetic pigments, chlorophyll fluorescence parameters, chlorophyll index (SPAD), and membrane stability index (MSI) and decreasing hydrogen peroxide and malondialdehyde, as well. Also application of GO–Pro NPs enhanced proline, antioxidant enzymes activities, and most dominant constituents of essential oil. The highest MSI (48.87%) and proline content (15.36 µM g?1 FW) were observed in plant treated with GO–Pro NPs (50 mg L?1) under 100 mM NaCl salinity stress. The GO–Pro NPs treatment at lower dose (50 mg L?1) could be introduced as the best preservative treatment for Moldavian balm under salt stress. GO application mostly had no effect on the measured parameters announcing it as carrier for Pro to enhance its efficiency. In conclusion, GO–Pro NPs application could promote Moldavian balm performance and essential oil under salinity presenting GO–Pro NPs as new treatment against stress conditions.

  相似文献   

18.
Effect of different auxins, namely, 2,4-dichlorophenoxyacetic acid (2,4-D), naphthalene acetic acid (NAA) and indole acetic acid (IAA) and Azospirillum brasilense bioinoculation on the enhancement of polygalacturonase (PG) activity in rice roots during para nodulation and endorhizosphere colonization of Azospirillum was studied under in vitro condition. It was observed that Azospirillum bioinoculation could augment PG activity of rice roots to a lesser extent without any root morphogenesis whereas auxin application together with Azospirillum bioinoculation enhanced PG activity of rice roots to a higher level which resulted in better root morphogenesis (para nodule) and endorhizosphere colonisation of A. brasilense. Among the three auxins tested, 2,4-D, even at lower concentration (0.5 ppm) enhanced the rice root PG activity, root morphogenesis and endorhizosphere colonization of Azospirillum while it was 2.0 ppm with NAA and variable with IAA. It is concluded that there is a positive correlation existing among PG activity, degree of root morphogenesis and endorhizosphere colonization of Azospirillum brasilense in rice roots and the degree of correlation is determined by the chemical composition, concentration and mode of action of the auxin utilised.  相似文献   

19.
【背景】前期结果表明,DDT降解菌株Chryseobacterium sp. PYR2可高效去除土壤中的DDT等污染物,具有潜在的应用价值,但该菌对植物的影响尚不清楚。【目的】探讨菌株Chryseobacterium sp. PYR2对植物的促生作用及其机理,为后续开发DDT降解及植物促生双效功能菌剂提供理论依据。【方法】配制该菌株的不同梯度稀释菌悬液,用纸卷发芽法和盆栽法研究菌悬液对小麦种子萌发和植株生长的影响;Salkowski法测定PYR2合成吲哚-3-乙酸(Indole-3-acetic acid,IAA)量;单因素实验研究不同培养条件对菌株生长及IAA合成的影响;液相色谱-串联质谱-多反应监测(LC-MS/MS-MRM)方法分析IAA在PYR2菌体内的生物合成途径。【结果】PYR2菌悬液可明显提高小麦种子萌发率并促进小麦植株的生长,小麦的侧根数、株高、鲜重、干重等指标均明显提高。该作用是由于菌株PYR2可以合成植物生长激素IAA。最适IAA合成条件:温度30°C,pH 7.0-8.0,盐浓度0.5%,L-色氨酸50mg/L。代谢液中检测到色醇、色胺和吲哚-3-乙酰胺3种中间代谢产物,推测PYR2体内存在3条IAA合成途径,分别为吲哚-3-丙酮酸(IPy A)、TAM和IAM途径。【结论】菌株PYR2对小麦具有明显的促生效果,是由于其具有多条高效合成IAA的代谢途径,表明其在农药污染土壤的生物修复及作物种植中具有潜在的应用前景。  相似文献   

20.
该研究通过向土壤中添加不同含量(1%、2%、3%、4%和5%)的氧化石墨烯(graphene oxide,GO),分析其对黑麦草根系生长及抗逆生理特性的影响。结果表明:(1)低剂量(1%和2%)的GO对黑麦草根系生长没有显著影响,高剂量(3%~5%)的GO处理显著抑制了黑麦草根系生长。(2)1% GO处理对根体积和根生物量没有影响,随着GO添加量的增加,黑麦草根体积和根生物量逐渐减小,在5% GO处理下,降至最低,根干重较对照降低了22.64%。(3)1% GO处理对黑麦草根保护酶活性与丙二醛(MDA)含量影响不显著,随着GO添加量的增加,过氧化物酶(POD)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性显著高于对照组,且MDA含量也显著增加,说明GO对黑麦草根系生长产生了氧化胁迫。(4)GO处理超过1%时黑麦草根系活力显著下降,并于5% GO处理下根系活力降至最小,较对照下降了35.07%。研究认为,低剂量(1%~2%)的GO对黑麦草的生长没有影响,而高剂量GO则会对根系产生明显的氧化胁迫,从而造成根系损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号