首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several pure cultures of alkaliphilic haloaloarchaea were enriched and isolated from hypersaline soda lakes in southwestern Siberia using amylopectin and fructans as substrates. Phylogenomic analysis placed the isolates into two distinct groups within the class Halobacteria. Four isolates forming group 1 were closely related to a recently described Natranaeroarchaeum sulfidigenes and the other three strains forming group 2 represent a novel genus-level phylogenetic lineage. All isolates are saccharolytic archaea growing with various starch-like alpha-glucans including soluble starch, amylopectin, dextrin, glycogen, pullulane and cyclodextrin. In addition, group 1 can use levan while group 2 – inulin (plant storage beta-fructans). Group 1 strains can also grow anaerobically with either glucose or maltose using elemental sulfur as the electron acceptor. Both groups are moderately alkaliphilic with a pH range for growth from 7.2 to 9.3 (optimum between 8.0–8.8) and low Mg-demanding extreme halophiles growing optimally at 4 M total Na+. The major respiratory menaquinone is MK-8:8 and the core biphytanyl lipids are dominated by archaeol (C20-C20) and a less abundant extended archaeol (C20-C25) with PG and PGP-Me as polar groups. The four isolates of group 1 are suggested to be classified into a new species as Natranaeroarchaeum aerophilus sp. nov. (type strain AArc-St1-1T = JCM 32519T). The three isolates of group 2 are proposed to form a new genus and species for which the name Natronocalculus amylovorans gen. nov., sp. nov. is suggested (type strain AArc-St2T = JCM 32475T).  相似文献   

2.
A novel anaerobic, mesophilic, alkaliphilic, chemoorganotrophic bacterium (strain M08fumT) was isolated from a salsa lake of a terrestrial mud volcano (Taman Peninsula, Russia). Cell of strain M08fumT were Gram-stain-negative, rod-shaped, non-spore forming motile rods. The temperature range for growth was 10–45 °C (optimum at 30 °C). The pH range for growth was 7.0–11.0, with an optimum at pH 8.5–9.0. The isolate was capable of organic acids fermentation and anaerobic respiration with elemental sulfur, Fe(III) and arsenate. The end products of fumarate fermentation were succinate, acetate and CO2. The closest phylogenetic relatives of strain M08fumT were members of the family Geopsychrobacteraceae, class Desulfuromonadia. The genome of strain M08fumT had a size of 3.10 Mb with a DNA G + C content of 53.1% (WGS). Genome analysis revealed the presence of genes involved in fumarate fermentation, arsenate reduction and resistance, sulfur respiration and Fe (III) reduction. Based on the phenotypic, genotypic and phylogenetic characteristics we propose to assign strain M08fumT to a new species of a novel genus Pelovirga terrestris gen. nov., sp. nov. within the family Geopsychrobacteraceae. The type strain of Pelovirga terrestris is M08fumT (=KCTC 15919T = VKM B-3407T). This is the first representative of the class Desulfuromonadia, isolated in pure culture from a mud volcano and the first alkaliphile in the family Geopsychrobacteraceae.  相似文献   

3.
Two groups of alkaliphilic haloarchaea from hypersaline alkaline lakes in Central Asia, Egypt and North America were enriched and isolated in pure culture using chitin as growth substrate. These cultures, termed AArcht, were divided into two groups: group 1 which includes eleven isolates from highly alkaline soda lakes and group 2 which contains a single isolate obtained from the alkaline hypersaline Searles Lake. The colonies of chitin-utilizing natronoarchaea were red-pigmented and surrounded by large zones of chitin hydrolysis. The free cells of both groups were mostly flat nonmotile rods, while the cells that attached to chitin or formed colonies on chitin plates were mostly coccoid. The isolates are obligate aerobic saccharolytic archaea utilizing chitin and chitosane (less actively) as the only sugar polymers as well as a few hexoses as their carbon and energy source. Both groups are extremely halophilic, growing optimally at 3.5–4 M total Na+, but they differ in their pH profiles: the main group 1 isolates are obligately alkaliphilic, while the single group 2 strain (AArcht-SlT) is alkalitolerant. The core archaeal lipids in both groups are dominated by C20–C20 and C20–C25 dialkyl glycerol ethers (DGE) in approximately equal proportion. Phylogenetic analysis indicated that the isolates form an independent genus-level lineage within the family Natrialbaceae with 3 species-level subgroups. The available genomes of the closest cultured relatives of the AArcht strains, belonging to the genera Natrialba and Halopiger, do not encode any chitinase-related genes. On the basis of their unique phenotypic properties and distinct phylogeny, we suggest that the obligate alkaliphilic AArcht isolates (group 1) with an identical phenotype are classified into a new genus and species Natrarchaeobius chitinivorans gen. nov., sp. nov., with strain AArcht4T as the type strain (JCM 32476T = UNIQEM U966T), while the facultatively alkaliphilic strain AArcht-SlT (group 2) — as a new species Natrarchaeobius halalkaliphilus sp. nov. (JCM 32477T = UNIQEM U969T).  相似文献   

4.
5.
During a cultural diversity survey on hydrolytic bacteria in saline alkaline soils, a hydrolytic actinobacterium strain ACPA39T was enriched and isolated in pure culture from a soda solonchak soil in southwestern Siberia. It forms a substrate mycelium with rod-shaped sporangia containing 1–3 exospores. The isolate is obligately alkaliphilic, growing at pH 7.5–10.3 (optimum at 8.5–9.0) and moderately halophilic, tolerating up to 3 M total Na+ in the form of sodium carbonates. It is an obligately aerobic, organoheteroterophic, saccharolytic bacterium, utilizing various sugars and alpha/beta-glucans as growth substrates. According to the 16S rRNA gene-based phylogenetic analysis, strain ACPA39T forms a distinct branch within the family Micromonosporaceae, with the sequence identities below 94.5% with type strains of other genera. This is confirmed by phylogenomic analysis based on the 120 conserved single copy protein-based markers and genomic indexes (ANI, AAI). The cell-wall of ACPA39T contained meso-DAP, glycine, glutamic acid and alanine in a equimolar ratio, characteristic of the peptidoglycan type A1γ'. The whole-cell sugars include galactose and xylose. The major menaquinone is MK-10(H4). The identified polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The polar lipid fatty acids were dominated by anteiso-C17:0, iso-C16:0, iso-C17:0, 10 Me-C18:0 and C18:1ω9. Based on the distinct phylogeny, the chemotaxonomy features and unique phenotypic properties, strain ACPA39T (DSM 106523T = VKM 2772T) is classified into a new genus and species in the family Micromonosporaceae for which the name Natronosporangium hydrolitycum gen. nov., sp. nov. is proposed.  相似文献   

6.
A Gram-negative staining, facultative anaerobic, cocco-bacillus-shaped organism was isolated from a post-operative abdominal wound. Based on morphological and biochemical criteria, strain MX 1040 ( = CCUG 54731T) was tentatively identified as Bacteroidaceae but did not correspond to any recognized species of this family. Comparative 16S rRNA gene sequencing analysis demonstrated the organism to be related to species of the genus Dysgonomonas, although sequence divergence values of >5% with the other members of this genus demonstrated the organism to represent a novel species. Phylogenetic analysis revealed the novel organism to be most closely related to Dysgonomonas gadei. The major long-chain cellular fatty acids of the novel species consisted of iso-C14:0, anteiso-C15:0, C16:0, and iso-C16:0. Based on the phenotypic criteria and phylogenetic considerations, it is proposed that strain MX 1040 from a human clinical source represents a new species of the genus Dysgonomonas, as Dysgonomonas hofstadii sp. nov. The type strain of D. hofstadii is CCUG 54731T ( = CCM 7606T).  相似文献   

7.
A novel facultatively anaerobic moderately thermophilic bacterium, strain B-154 T, was isolated from a terrestrial hot spring in the Baikal lake region (Russian Federation). Gram-negative, motile, spherical cells were present singly, in pairs, or aggregates, and reproduced by binary fission. The strain grew at 30–57 °C and within a pH range of 5.1–8.4 with the optimum at 50 °C and pH 6.8–7.1. Strain B-154 T was a chemoorganoheterotroph, growing on mono-, di- and polysaccharides (xylan, starch, galactan, galactomannan, glucomannan, xyloglucan, pullulan, arabinan, lichenan, beta-glucan, pachyman, locust bean gum, xanthan gum). It did not require sodium chloride or yeast extract for growth. Major cellular fatty acids were anteiso-C15:0, iso-C16:0 and iso-C14:0. The respiratory quinone was MK-7. The complete genome of strain B-154 T was 4.73 Mbp in size; its G + C content was 61%. According to the phylogenomic analysis strain B-154 T forms a separate family-level phylogenetic lineage. Moreover, together with Limisphaera ngatamarikiensis and “Pedosphaera parvula” this strain forms a separate order-level phylogenetic lineage within Verrucomicrobiae class. Hence, we propose a novel order, Limisphaerales ord. nov., with two families Limisphaeraceae fam. nov. and Fontisphaeraceae fam. nov., and a novel genus and species Fontisphaera persica gen. nov., sp. nov. with type strain B-154 T. Ecogenomic analysis showed that representatives of the Limisphaerales are widespread in various environments. Although some of them were detected in hot springs the majority of Limisphaerales (54% of the studied metagenome-assembled genomes) were found in marine habitats. This study allowed a better understanding of physiology and ecology of Verrucomicrobiota – a rather understudied bacterial phylum.  相似文献   

8.
Two heterotrophic bacteroidetes strains were isolated as satellites from autotrophic enrichments inoculated with samples from hypersaline soda lakes in southwestern Siberia. Strain Z-1702T is an obligate anaerobic fermentative saccharolytic bacterium from an iron-reducing enrichment culture, while Ca. Cyclonatronum proteinivorum OmegaT is an obligate aerobic proteolytic microorganism from a cyanobacterial enrichment. Cells of isolated bacteria are characterized by highly variable morphology. Both strains are chloride-independent moderate salt-tolerant obligate alkaliphiles and mesophiles. Strain Z-1702T ferments glucose, maltose, fructose, mannose, sorbose, galactose, cellobiose, N-acetyl-glucosamine and alpha-glucans, including starch, glycogen, dextrin, and pullulan. Strain OmegaT is strictly proteolytic utilizing a range of proteins and peptones. The main polar lipid fatty acid in both strains is iso-C15:0, while other major components are various C16 and C17 isomers. According to pairwise sequence alignments using BLAST Gracilimonas was the nearest cultured relative to both strains (<90% of 16S rRNA gene sequence identity). Phylogenetic analysis placed strain Z-1702T and strain OmegaT as two different genera in a deep-branching clade of the new family level within the order Balneolales with genus. Based on physiological characteristics and phylogenetic position of strain Z-1702T it was proposed to represent a novel genus and species Natronogracilivirga saccharolityca gen. nov., sp. nov. (= DSMZ 109061T =JCM 32930T =VKM B 3262T). Furthermore, phylogenetic and phenotypic parameters of N. saccharolityca and C. proteinivorum gen. nov., sp. nov., strain OmegaT (=JCM 31662T, =UNIQEM U979T), make it possible to include them into a new family with a proposed designation Cyclonatronaceae fam. nov..  相似文献   

9.
Nine pure cultures of neutrophilic haloaloarchaea capable of anaerobic growth by carbohydrate-dependent sulfur respiration were isolated from hypersaline lakes in southwestern Siberia and southern Russia. According to phylogenomic analysis the isolates were closely related to each other and formed a new species within the genus Halapricum (family Haloarculaceae). They have three types of catabolism: fermentative, resulting in H2 formation; anaerobic respiration using sulfur compounds as e-acceptors and aerobic respiration. Apart from elemental sulfur, all isolates can also use three different sulfoxides as acceptors and the type strain also grows with thiosulfate, reducing it partially to sulfide and sulfite. All strains utilized sugars and glycerol as the e-donors and C source for anaerobic growth and some can also grow with alpha-glucans, such as starch and dextrins. The major respiratory menaquinones are MK-8:8 and MK-8:7, but 5–19% consists of “thermoplasmata” quinones (MMK-8:8 and MMK-8:7), whose occurrence in haloarchaea is unprecedented. On the basis of their unique physiological properties and results of phylogenomic analysis, the isolates are suggested to be classified into a novel species Halapricum desulfuricans sp. nov. (type strain HSR12-2T = JCM 34032T = UNIQEM U1001T).  相似文献   

10.
An anaerobic enrichment with pyruvate as electron donor and thiosulfate at pH 10 and 0.6 M Na+ inoculated with pasteurized soda lake sediments resulted in a sulfidogenic coculture of two morphotypes of obligately anaerobic haloalkaliphilic endospore-forming clostridia, which were further isolated in pure culture. Strain AHT16 was a thin long rod able to ferment sugars and pyruvate and to respire H2, formate and pyruvate using thiosulfate and fumarate as electron acceptors and growing optimally at pH 9.5. Thiosulfate was reduced incompletely to sulfide and sulfite. The strain was closely related (99% sequence similarity) to a peptolytic alkaliphilic clostridium Natronincola peptidovorans. Strain AHT17 was a short rod with a restricted respiratory metabolism, growing with pyruvate and lactate as electron donor and sulfite, thiosulfate and elemental sulfur as electron acceptors with a pH optimum 9.5. Thiosulfate was reduced completely via sulfite to sulfide. The ability of AHT17 to use sulfite explained the stability of the original coculture of the two clostridia—one member forming sulfite from thiosulfate and another consuming it. Strain AHT17 formed an independent deep phylogenetic lineage within the Clostridiales and is proposed as a new genus and species Desulfitisporum alkaliphilum gen. nov., sp. nov. (=DSM 22410T = UNIQEM U794T).  相似文献   

11.
A novel facultatively anaerobic moderately thermophilic bacterium, strain B-254T, was isolated from a terrestrial hot spring near the town of Goryachinsk in the Baikal lake region (Russian Federation). Motile spherical cells of the strain were present as single cocci, in pairs, or aggregates. The cells had a Gram negative cell wall and reproduced by binary fission. The isolate grew at 30–57 °C (opt. 50–54 °C) and at pH 5.1–8.4 (opt. 6.6–7.1). Strain B-254T was a chemoorganoheterotroph, growing on mono-, di- and polysaccharides (xylan, starch, galactan, galactomannan, xyloglucan, arabinan, curdlan, beta-glucan, locust bean gum, xanthan gum). Sodium chloride or yeast extract were not required for growth. Major cellular fatty acids were iso-C16:0, anteiso-C17:0, and C20:0; major polar lipid was phosphatidylethanolamine. The complete genome of strain B-254T was 5.54 Mb; its GC content was 64 %. According to the results of 16S rRNA gene sequence-based phylogenetic analysis and the conserved proteins sequences-based phylogenomic analysis strain B-254T was on a separate lineage within the order Tepidisphaerales (Phycisphaerae, Planctomycetes). Based on phylogenetic and phylogenomic analyses of Phycisphaerae, whole genome comparisons of Tepidisphaerales as well as distinctive phenotypic features of the strain, it was assigned to a novel genus and species for which the name Fontivita pretiosa gen. nov. sp. nov. is proposed. Strain B-254T = KCTC 82380T = VKM B-3507T.  相似文献   

12.
Six strains of extremely halophilic and alkaliphilic euryarchaea were enriched and isolated in pure culture from surface brines and sediments of hypersaline alkaline lakes in various geographical locations with various forms of insoluble cellulose as growth substrate. The cells are mostly flat motile rods with a thin monolayer cell wall while growing on cellobiose. In contrast, the cells growing with cellulose are mostly nonmotile cocci covered with a thick external EPS layer. The isolates, designated AArcel, are obligate aerobic heterotrophs with a narrow substrate spectrum. All strains can use insoluble celluloses, cellobiose, a few soluble glucans and xylan as their carbon and energy source. They are extreme halophiles, growing within the range from 2.5 to 4.8 M total Na+ (optimum at 4 M) and obligate alkaliphiles, with the pH range for growth from 7.5 to 9.9 (optimum at 8.5–9). The core archaeal lipids of strain AArcel5T were dominated by C20–C20 dialkyl glycerol ether (DGE) (i.e. archaeol) and C20–C25 DGE in nearly equal proportion. The 16S rRNA gene analysis indicated that all six isolates belong to a single genomic species mostly related to the genera Saliphagus-Natribaculum-Halovarius. Taking together a substantial phenotypic difference of the new isolates from the closest relatives and the phylogenetic distance, it is concluded that the AArcel group represents a novel genus-level branch within the family Natrialbaceae for which the name Natronobiforma cellulositropha gen. nov., sp. nov. is proposed with AArcel5T as the type strain (JCM 31939T = UNIQEM U972T).  相似文献   

13.
Bao  Yixuan  Liu  Junwei  Zhang  Xuan  Lei  Peng  Qiu  Jiguo  He  Jian  Li  Na 《Antonie van Leeuwenhoek》2021,114(10):1609-1617

An obligate anaerobic bacterial strain (BAD-6T) capable of degrading acetochlor and butachlor was isolated from an anaerobic acetochlor-degrading reactor. Cells were Gram-stain positive, straight to gently curved rods with flagella. The major fermentation products in peptone-yeast broth were acetate and butyrate. The optimum temperature and pH for growth was 30 °C and 7.2–7.5, respectively. The major cellular fatty acids (>?10%) were C14:0 FAME, C16:0 FAME and cyc-9,10-C19:0 DMA. Genome sequencing revealed a genome size of 4.80 Mb, a G?+?C content of 43.6 mol% and 4741 protein-coding genes. The most closely related described species on the basis of 16S rRNA gene sequences was Anaerovorax odorimutans NorPutT in the order Clostridiales of the class Clostridia with sequence similarity of 94.9%. The nucleotide identity (ANI) value and digital DNA–DNA hybridization (dDDH) between the genomes of strain BAD-6T and Ana. odorimutans NorPutT were 70.9% and 15.9%, respectively. Based on the distinct differences in phylogenetic and phenotypic characteristics between strain BAD-6T and related species, Sinanaerobacter chloroacetimidivorans gen. nov., sp. nov. is proposed to accommodate the strain. Strain BAD-6T is the type strain (=?CCTCC AB 2021092T?=?KCTC 25290T).

  相似文献   

14.
A novel Gram-negative, facultatively anaerobic and motile bacterial strain, designated KMM 6351T, was isolated from the sea urchin Strongylocentrotus intermedius and examined using a polyphasic taxonomic approach. A phylogenetic analysis based on 16S rRNA gene sequencing revealed that the strain formed a distinct phyletic line in the class Gammaproteobacteria and was most closely related to the genera Aliivibrio, Photobacterium and Vibrio. Strain KMM 6351T grows at 4–40 °C and with 0.5–12 % NaCl and decomposes aesculin, agar, gelatin, starch, chitin and DNA. The DNA G+C content of the strain was determined to be 46.1 mol%. The prevalent fatty acids were found to be C16:0, C18:1 ω7c, C12:0 3-OH and summed feature 3 (comprising C16:1 ω7c and/or iso-C15:0 2-OH fatty acids). The major polar lipids were determined to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminolipid. The predominant ubiquinone was found to be Q-8. The results of the phenotypic, chemotaxonomic and genotypic analyses clearly indicated that the novel strain should be assigned to a new genus and species within the class γ-Proteobacteria for which the name Echinimonas agarilytica gen. nov., sp. nov. is proposed. The type strain is KMM 6351T (=KCTC 22996T = LMG 25420T).  相似文献   

15.
A novel anaerobic bacterium (strain M08_MBT) was isolated from a terrestrial mud volcano (Taman Peninsula, Russia). Gram-stain-negative cells were straight and slender rods with gliding motility, occasionally forming long filaments. The isolate was mesophilic, slightly halo- and alkaliphilic chemoorganoheterotroph, growing on carbohydrates (starch, dextrin, pectin, glucose, fructose, mannose, maltose, trehalose, lactose, sucrose) and proteinaceous compounds (peptone, tryptone, gelatin, casein and albumin). Strain M08_MBT tolerated 3% oxygen in the gas phase while catalase negative. The dominant cellular fatty acids of strain M08_MBT were C15:0, C15:1 and C13:0 acids. 16S rRNA gene sequence analysis revealed that strain M08_MBT belongs to the order Bacteroidales and only distantly related to other cultivated members of this order (85.12–90.01% 16S rRNA gene similarity). The genome of strain M08_MBT had a size of 4.37 Mb with a DNA G + C content of 43.5 mol% (WGS). The genes involved in gliding motility, proteolysis, central carbon metabolism, and oxygen tolerance were listed in genome annotation. Based on the phenotypic and genotypic characteristics, strain M08_MBT represents a novel species of a novel genus within family Tenuifilaceae, with proposed name Perlabentimonas gracilis gen. nov., sp. nov. The type strain is M08_ MBT (=DSM 110720 T = VKM B-3471 T). This is the first representative of Bacteroidales isolated in pure culture from a mud volcano.  相似文献   

16.
A Gram-negative, aerobic, motile rod strain, designated Ma-20T, was isolated from a pool of marine Spirulina platensis cultivation, Sanya, China, and was subjected to a polyphasic taxonomy study. Strain Ma-20T can grow in the presence of 0.5–11 % (w/v) NaCl, 10–43 °C and pH 6–10, and grew optimally at 30 °C, pH 7.5–9.0 in natural seawater medium. The polar lipids were composed of phosphatidylethanolamine, three unidentified phospholipids and three unidentified polar lipids. The respiratory quinone was ubiquinone 8 (Q-8) and the major fatty acids were C18:1ω6c/C18:1ω7c (summed feature 8, 32.84 %), C16:1ω6c/C16:1ω7c (summed feature 3, 30.76 %), C16:0 (13.54 %), C12:03-OH (4.63 %), and C12:0 (4.09 %). The DNA G+C content of strain Ma-20T was 58 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Ma-20T belonging to Gammaproteobacteria, it shared 88.46–91.55 and 89.21–91.26 % 16S rRNA gene sequence similarity to the type strains in genus Hahella and Marinobacter, respectively. In addition to the large 16S rRNA gene sequence difference, Ma-20T can also be distinguished from the reference type strains Hahella ganghwensis FR1050T and Marinobacter hydrocarbonoclasticus sp. 17T by several phenotypic characteristics and chemotaxonomic properties. On the basis of phenotypic, chemotaxonomic and phylogenetic properties, strain Ma-20T is suggested to represent a novel species of a new genus in Gammaproteobacteria, for which the name Nonhongiella spirulinensis gen. nov., sp. nov. is proposed. The type strain is Ma-20T (=KCTC 32221T=LMG 27470T).  相似文献   

17.
18.
Bacteria in the family Geobacteraceae have been proven to fill important niches in a diversity of anaerobic environments and global biogeochemical processes. Here, three bacterial strains in this family, designated Red875T, Red259T, and Red421T were isolated from river sediment and paddy soils in Japan. All of them are Gram-staining-negative, strictly anaerobic, motile, flagellum-harboring cells that form red colonies on agar plates and are capable of utilizing Fe(III)-NTA, Fe(III) citrate, ferrihydrite, MnO2, fumarate, and nitrate as electron acceptors with acetate, propionate, pyruvate, and glucose as electron donors. Phylogenetic analysis based on the 16S rRNA gene and 92 concatenated core proteins sequences revealed that strains Red259T and Red421T clustered with the type strains of Geomonas species, whereas strain Red875T formed an independent lineage within the family Geobacteraceae. Genome comparison based on  average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values clearly distinguished these three strains from other Geobacteraceae members, with lower values than the thresholds for species delineation. Moreover, strain Red875T also shared low average amino acid identity (AAI) and percentage of conserved proteins (POCP) values with the type species of the family Geobacteraceae. Based on these physiological, chemotaxonomic, and phylogenetic distinctions, we propose that strain Red875T (=NBRC 114290T = MCCC 1K04407T) represents a novel genus in the family Geobacteraceae, namely, Geomesophilobacter sediminis gen. nov., sp. nov., and strains Red259T (=NBRC 114288T = MCCC 1K05016T) and Red421T (=NBRC 114289T = MCCC 1K06216T) represent two novel independent species in the genus Geomonas, namely, Geomonas propionica sp. nov. and Geomonas anaerohicana sp. nov., respectively.  相似文献   

19.
Strain JC90T was isolated from a soda lake in Lonar, India. Strain JC90T maintains its external pH to 8.5 and participates in halite formation. Based on 16S rRNA gene sequence similarity studies, strain JC90T was found to belong to the genus Salinicoccus and is most closely related to “Salinicoccus kekensis” K164T (99.3 %), Salinicoccus alkaliphilus T8T (98.4 %) and other members of the genus Salinicoccus (<96.5 %). However Strain JC90T is <36 % related (based on DNA–DNA hybridization) with the type strains of “S. kekensis” K164T and S. alkaliphilus T8T. The DNA G+C content of strain JC90T was determined to be 46 mol %. The cell-wall amino acids were identified as lysine and glycine. Polar lipids were found to include diphosphatidylglycerol, phosphatidylglycerol, phosphatidyl ethanolamine, an unidentified glycolipid and unidentified lipids (L1,2). Major hopanoids of strain JC90T were determined to be bacterial hopane derivatives (BHD1,2), diplopterol, diploptene and two unidentified hopanoids (UH1,2). The predominant isoprenoid quinone was identified as menaquinone (MK-6). Anteiso-C15:0 was determined to be the predominant fatty acid and significant proportions of iso-C14:0, C14:0, iso-C15:0, C16:0, iso-C16:0, iso-C17:0, anteiso-C17:0 and C18:02OH were also detected. The results of physiological and biochemical tests support the molecular evidence and allowed a clear phenotypic differentiation of strain JC90T from all other members of the genus Salinicoccus. Strain JC90T is therefore considered to represent a novel species, for which the name Salinicoccus halitifaciens sp. nov. is proposed. The type strain is JC90T (=KCTC 13894T =DSM 25286T).  相似文献   

20.
Bifidobacterium is one of the dominating bacterial genera in the honey bee gut, and they are the key degrader of diet polysaccharides for the host. Previous genomic analysis shows that they belong to separate phylogenetic clusters and exhibited different functional potentials in hemicellulose digestion. Here, three novel strains from the genus Bifidobacterium were isolated from the guts of the honey bee (Apis mellifera). Phylogenomic analysis showed that the isolates could be grouped into four phylogenetic clusters. The average nucleotide identity values between strains from different clusters are <95%, while strains in Cluster IV belong to the characterized species Bifidobacterium asteroides. Carbohydrate-active enzyme annotation confirmed that the metabolic capacity for carbohydrates varied between clusters of strains. Cells are Gram-positive rods; they grew both anaerobically and in a CO2-enriched atmosphere. All strains grew at a temperature range of 20–42 °C, with optimum growth at 35 °C. The pH range for growth was 5–9. Strains from different phylogenetic clusters varied in multiple phenotypic and chemotaxonomic characterizations. Thus, we propose three novel species Bifidobacterium apousia sp. nov. whose type strain is W8102T (=CGMCC 1.18893 T = JCM 34587 T), Bifidobacterium choladohabitans sp. nov., whose type strain is B14384H11T (=CGMCC 1.18892 T = JCM 34586 T), and Bifidobacterium polysaccharolyticum sp. nov. whose type strain is W8117T (=CGMCC 1.18894 T = JCM 34588 T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号