首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Schizophrenia is a serious neuropsychiatric illness affecting about 1% of the world’s population. It is considered a complex inheritance disorder. A number of genes are involved in combination in the etiology of the disorder. Evidence implicates the altered dopaminergic transmission in schizophrenia. In the present study, in order to identify susceptibility genes for schizophrenia in dopaminergic metabolism, we analyzed 59 single nucleotide polymorphisms (SNPs) in 24 genes of the dopaminergic pathway among 82 unrelated patients with schizophrenia and 108 matched normal controls. Considering that traditional single-locus association studies ignore the multigenic nature of complex diseases and do not take into account possible interactions between susceptibility genes, we proposed a multi-locus analysis method, using the posterior probability of morbidity as a measure of absolute disease risk for a multi-locus genotype combination, and developed an algorithm based on perturbation and average to detect the susceptibility multi-locus genotype combinations, as well as to repress noise and avoid false positive results at our best. A three-locus SNP genotype combination involved in the interactions ofCOMT andALDH3B1 genes was detected to be significantly susceptible to schizophrenia.  相似文献   

2.
李俊宁  许琪  沈岩  季梁 《遗传》2006,28(4):403-406
精神分裂症是由多基因相互作用导致的复杂疾病。对其易感基因,儿茶酚氧位甲基转移酶基因(COMT)的众多报道充满了矛盾。在对偏执型精神分裂症研究中,我们用多基因座关联分析法研究了4个涉及神经递质多巴胺代谢的基因之间的相互作用。分析结果支持如下假说:COMT-136-BclIVal108/158Met有调控作用。当前者的基因型是CC时,后者的易感等位基因型是MetA);而当前者的基因型是GG时,后者的易感等位基因型是ValG)。这一新的假说可以解释此前单基因座分析对Val108/158Met(COMT)的截然相反的报道,同时也显示了多基因座分析对复杂疾病研究的必要性。   相似文献   

3.
The present study detected two single nucleotide polymorphisms (SNPs) at the PLA2G4D locus, rs2459692 and rs4924618, to investigate a genetic association between the PLA2G4D gene and schizophrenia. A total of 236 Chinese parent-offspring trios of Han descent were recruited for the genetic analysis. The transmission disequilibrium test (TDT) did not show allelic association either for rs2459692 (chi(2) = 0.217, P = 0.641) or for rs4924618 (chi(2) = 0.663, P = 0.416). To see the combined effect of the PLA2G4D locus with the other three PLA2G4 genes, we applied the above two SNPs as a conditional marker to test the pair-wise combination for a disease association. The conditioning on allele (COA) test revealed a weak association for the rs2459692-PLA2G4A combination (chi(2) = 6.03, df = 2, P = 0.049), the rs2459692-PLA2G4B combination (chi(2) = 7.16, df = 3, P = 0.028) and the rs4924618-PLA2G4C combination (chi(2) = 7.01, df = 2, P = 0.03), whereas the conditioning on genotype (COG) test showed a weak association only for the rs4924618-PLA2G4C combination (chi(2) = 8.52, df = 3, P = 0.036). Because we performed a multi-locus analysis in this study, the weak association shown by the conditional tests could make little biological sense. In conclusion, the PLA2G4D gene may not be involved in a susceptibility to schizophrenia.  相似文献   

4.
Genes of the immune system are relevant to the etiology of schizophrenia. However, to our knowledge, no large-scale studies, using molecular methods, have been undertaken to investigate the role of highly polymorphic immunoglobulin GM (γ marker) genes in this disorder. In this investigation, we aimed to determine whether particular GM genotypes were associated with susceptibility to schizophrenia. Using a matched case–control study design, we analyzed DNA samples from 798 subjects—398 patients with schizophrenia and 400 controls—obtained from the U.S. National Institute of Mental Health Repository. GM alleles were determined by the TaqMan® genotyping assay. The GM 3/3; 23?/23? genotype was highly significantly associated with susceptibility to schizophrenia (p = 0.0002). Subjects with this genotype were over three times (OR 3.4; 95 % CI 1.7–6.7) as likely to develop schizophrenia as those without this genotype. Our results show that immunoglobulin GM genes are risk factors for the development of schizophrenia. Since GM alleles have been implicated in gluten sensitivity and in immunity to neurotropic viruses associated with cognitive impairment, the results presented here may help unify these two disparate areas of pathology affected in this disorder.  相似文献   

5.
Schizophrenia is a severe psychiatric disease with complex etiology, affecting approximately 1% of the general population. Most genetics studies so far have focused on disease association with common genetic variation, such as single-nucleotide polymorphisms (SNPs), but it has recently become apparent that large-scale genomic copy-number variants (CNVs) are involved in disease development as well. To assess the role of rare CNVs in schizophrenia, we screened 54 patients with deficit schizophrenia using Affymetrix's GeneChip 250K SNP arrays. We identified 90 CNVs in total, 77 of which have been reported previously in unaffected control cohorts. Among the genes disrupted by the remaining rare CNVs are MYT1L, CTNND2, NRXN1, and ASTN2, genes that play an important role in neuronal functioning but--except for NRXN1--have not been associated with schizophrenia before. We studied the occurrence of CNVs at these four loci in an additional cohort of 752 patients and 706 normal controls from The Netherlands. We identified eight additional CNVs, of which the four that affect coding sequences were found only in the patient cohort. Our study supports a role for rare CNVs in schizophrenia susceptibility and identifies at least three candidate genes for this complex disorder.  相似文献   

6.
Several putative schizophrenia susceptibility genes have recently been reported, but it is not clear whether these genes are associated with schizophrenia in general or with specific disease subtypes. In a previous study, we found an association of the neuregulin 1 (NRG1) gene with non-deficit schizophrenia only. We now report an association study of four schizophrenia candidate genes in patients with and without deficit schizophrenia, which is characterized by severe and enduring negative symptoms. Single-nucleotide polymorphisms (SNPs) were genotyped in the DTNBP1 (dysbindin), G72/G30 and RGS4 genes, and the relatively unknown PIP5K2A gene, which is located in a region of linkage with both schizophrenia and bipolar disorder. The sample consisted of 273 Dutch schizophrenia patients, 146 of whom were diagnosed with deficit schizophrenia and 580 controls. The strongest evidence for association was found for the A-allele of SNP rs10828317 in the PIP5K2A gene, which was associated with both clinical subtypes (P = 0.0004 in the entire group; non-deficit P = 0.016, deficit P = 0.002). Interestingly, this SNP leads to a change in protein composition. In RGS4, the G-allele of the previously reported SNP RGS4-1 (single and as part of haplotypes with SNP RGS4-18) was associated with non-deficit schizophrenia (P = 0.03) but not with deficit schizophrenia (P = 0.79). SNPs in the DTNBP1 and G72/G30 genes were not significantly associated in any group. In conclusion, our data provide further evidence that specific genes may be involved in different schizophrenia subtypes and suggest that the PIP5K2A gene deserves further study as a general susceptibility gene for schizophrenia.  相似文献   

7.
Molecular mechanisms of schizophrenia.   总被引:8,自引:0,他引:8  
Schizophrenia is a complex disorder, where family, twin and adoption studies have been demonstrating a high heritability of the disease and that this disease is not simply defined by several major genes but rather evolves from addition or potentiation of a specific cluster of genes, which subsequently determines the genetic vulnerability of an individual. Linkage and association studies suggest that a genetic vulnerablility, is not forcefully leading to the disease since triggering factors and environmental influences, i.e. birth complications, drug abuse, urban background or time of birth have been identified. This has lead to the assumption that schizophrenia is not only a genetically defined static disorder but a dynamic process leading to dysregulation of multiple pathways. There are several different hypothesis based on several facets of the disease, some of them due to the relatively well-known mechanisms of therapeutic agents. The most widely considered neurodevelopmental hypothesis of schizophrenia integrates environmental influences and causative genes. The dopamine hypothesis of schizophrenia is based on the fact that all common treatments involve antidopaminergic mechanisms and genes such as DRD2, DRD3, DARPP-32, BDNF or COMT are closely related to dopaminergic system functioning. The glutamatergic hypothesis of schizophrenia lead recently to a first successful mGlu2/3 receptor agonistic drug and is underpinned by significant findings in genes regulating the glutamatergic system (SLC1A6, SLC1A2 GRIN1, GRIN2A, GRIA1, NRG1, ErbB4, DTNBP1, DAAO, G72/30, GRM3). Correspondingly, GABA has been proposed to modulate the pathophysiology of the disease which is represented by the involvement of genes like GABRA1, GABRP, GABRA6 and Reelin. Moreover, several genes implicating immune, signaling and networking deficits have been reported to be involved in the disease, i.e. DISC1, RGS4, PRODH, DGCR6, ZDHHC8, DGCR2, Akt, CREB, IL-1B, IL-1RN, IL-10, IL-1B. However, molecular findings suggest that a complex interplay between receptors, kinases, proteins and hormones is involved in schizophrenia. In a unifying hypothesis, different cascades merge into another that ultimately lead to the development of symptoms adherent to schizophrenic disorders.  相似文献   

8.
Complex neurodevelopmental disorders, such as schizophrenia, autism, attention deficit (hyperactivity) disorder, (manic) depressive illness and addiction, are thought to result from an interaction between genetic and environmental factors. Association studies on candidate genes and genome-wide linkage analyses have identified many susceptibility chromosomal regions and genes, but considerable efforts to replicate association have been surprisingly often disappointing. Here, we summarize the current knowledge of the genetic contribution to complex neurodevelopmental disorders, focusing on the findings from association and linkage studies. Furthermore, the contribution of the interaction of the genetic with environmental and epigenetic factors to the aetiology of complex neurodevelopmental disorders as well as suggestions for future research are discussed.Key Words: Neurodevelopmental disorders, susceptibility genes, environmental factors, gene-environment interactions, association studies, linkage analysis.  相似文献   

9.
The Disrupted-in-Schizophrenia-1 (DISC1) gene has been implicated in both schizophrenia and bipolar disorder by linkage and genetic association studies. Altered prefrontal cortical function is a pathophysiological feature of both disorders, and we have recently shown that variation in DISC1 modulates prefrontal activation in healthy volunteers. Our goal was to examine the influence of the DISC1 polymorphism Cys704Ser on prefrontal function in schizophrenia and bipolar disorder. From 2004 to 2008, patients with schizophrenia (N = 44), patients with bipolar disorder (N = 35) and healthy volunteers (N = 53) were studied using functional magnetic resonance imaging while performing a verbal fluency task. The effect of Cys704Ser on cortical activation was compared between groups as Cys704 carriers vs. Ser704 homozygotes. In contrast to the significant effect on prefrontal activation we had previously found in healthy subjects, no significant effect of Cys704Ser was detected in this or any other region in either the schizophrenia or bipolar groups. When controls were compared with patients with schizophrenia, there was a diagnosis by genotype interaction in the left middle/superior frontal gyrus [family-wise error (FWE) P = 0.002]. In this region, Ser704/ser704 controls activated more than Cys704 carriers, and there was a trend in the opposite direction in schizophrenia patients. In contrast to its effect in healthy subjects, variation in DISC1 Cys704Ser704 genotype was not associated with altered prefrontal activation in patients with schizophrenia or bipolar disorder. The absence of an effect in patients may reflect interactions of the effects of DISC1 genotype with the effects of other genes associated with these disorders, and/or with the effects of the disorders on brain function.  相似文献   

10.
There is substantial evidence found in the literature that supports the fact that the presence of oxidative stress may play an important role in the pathophysiology of schizophrenia. The glutathione S-transferases (GSTs) forms one of the major detoxifying groups of enzymes responsible for eliminating products of oxidative stress. Interindividual differences observed in the metabolism of xenobiotics have been attributed to the genetic polymorphism of genes coding for enzymes involved in detoxification. Thus, in this study we investigated the association of glutathione S-transferase Mu-1 (GSTM1) and glutathione S-transferase theta-1 (GSTT1) gene deletion polymorphisms and schizophrenia in a Tunisian population. A case–control study including 138 schizophrenic patients and 123 healthy controls was enrolled. The GSTM1 and GSTT1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR). No association was found between the GSTM1 genotype and schizophrenia, whereas the prevalence of the GSTT1 active genotype was significantly higher in the schizophrenic patients (57.2%) than in the controls (45.5%) with (OR = 0.6, IC 0.37–0.99, p = 0.039). Thus, we noted a significant association between schizophrenia and GSTT1 active genotype. Furthermore, the combination of the GSTM1 and GSTT1 null genotypes showed a non-significant trend to an increased risk of schizophrenia. The present finding indicated that GSTT1 seems to be a candidate gene for susceptibility to schizophrenia in at least Tunisian population.  相似文献   

11.
12.
Schizophrenia is a severe and heritable neuropsychiatric disorder, which arises due to a combination of common genetic variation, rare loss of function variation, and copy number variation. Functional genomic evidence has been used to identify candidate genes affected by this variation, which revealed biological pathways that may be disrupted in schizophrenia. Understanding the contributions of these pathways are critical next steps in understanding schizophrenia pathogenesis. A number of genes involved in endocytosis are implicated in schizophrenia. In this review, we explore the history of endosomal trafficking in schizophrenia and highlight new endosomal candidate genes. We explore the function of these candidate genes and hypothesize how their dysfunction may contribute to schizophrenia.  相似文献   

13.
Schizophrenia is a chronic debilitating neuropsychiatric disorder with complex etiopathology. Growing evidence suggests a significant role of chronic low grade inflammation in the pathophysiology of schizophrenia. Multiple immunological, genetic polymorphism and gene expression studies have established crucial roles of certain pro-inflammatory cytokines in the immune-mediated risk of schizophrenia. Although genetic studies suggest some variants within the pro-inflammatory IL-1β, IL-6, and TNF-α genes conferring risk to schizophrenia, the results however have been contradictory in various populations. In the present investigation, promoter SNPs of IL-6 (?174 G > C) and TNF-α (?238 G > A) genes have been studied to evaluate whether these variants contribute to schizophrenia susceptibility in Indian Bengalee population. Genotyping of the above SNPs was done in 100 well characterized and confirmed cases of paranoid schizophrenia and equal number of healthy donors belonging to the same ethnic group by using ABI 3730 Genetic Analyzer. No significant differences in genotype as well as allele frequencies were observed for IL-6 and TNF-α variants between the patient and control groups.  相似文献   

14.
The major mental disorders, schizophrenia and bipolar disorder are substantially heritable. Recent genomic studies have identified a small number of common and rare risk genes contributing to both disorders and support epidemiological evidence that genetic susceptibility overlaps between them. Prompted by the question of whether risk genes cluster in specific molecular pathways or implicate discrete mechanisms we and others have developed hypothesis-free methods of investigating genome-wide association datasets at a pathway-level. The application of our method to the 212 experimentally-derived pathways in the Kyoto Encycolpaedia of Genes and Genomes (KEGG) database identified significant association between the cell adhesion molecule (CAM) pathway and both schizophrenia and bipolar disorder susceptibility across three GWAS datasets. Interestingly, a similar approach applied to an autistic spectrum disorders (ASDs) sample identified a similar pathway and involved many of the same genes. Disruption of a number of these genes (including NRXN1, CNTNAP2 and CASK) are known to cause diverse neurodevelopmental brain disorder phenotypes including schizophenia, autism, learning disability and specific language disorder. Taken together these studies bring the CAM pathway sharply into focus for more comprehensive DNA sequencing to identify the critical genes, and investigate their relationships and interaction with environmental risk factors in the expression of many seemingly different neurodevelopmental disorders.  相似文献   

15.
Performance alterations in executive function have been studied as potential endophenotypes for several neuropsychiatric diseases. Planning is an important component of executive function and has been shown to be affected in diseases such as attention deficit hyperactivity disorder, schizophrenia, obsessive–compulsive disorder and Parkinson’s disease. Several genes related to dopaminergic systems, such as COMT, have been explored as candidates for influencing planning performance. The circadian clock gene PERIOD3 (PER3) has been shown to be associated with several complex behaviors in humans and could be involved in different signaling mechanisms. In this study, we evaluated the possible association between a functional polymorphism in the PER3 gene (PER3-VNTR, rs57875989) and performance in a commonly used test of planning (Tower of London, TOL) in 229 healthy subjects from Bogotá, Colombia. PER3-VNTR genotyping was carried out with conventional PCR and all participants completed the TOL test using the computerized Psychology Experiment Building Language (PEBL) battery. A linear regression model was used for the analysis of association with the SNPStats program. We found that 4/4 genotype carriers showed a better performance and made fewer moves, in comparison to 4/5 and 5/5 genotype carriers (p?=?0.003). These results appear to be independent from effects of this polymorphism on self-reported average hours of sleep during work days in our sample. This is the first evidence of an association between PER3-VNTR and planning performance in a sample of healthy subjects and our results are consistent from previous findings for alterations in other cognitive domains. Future studies examining additional genes could lead to the identification of novel molecular underpinnings of planning in healthy subjects and in patients with neuropsychiatric disorders.  相似文献   

16.
Recent large-scale genetic studies have provided robust evidence implicating several novel susceptibility genes for schizophrenia. These include ZNF804A, TCF4 and NRGN, which contain common variants that weakly increase schizophrenia susceptibility, and NRXN1, in which rare copy number variants have a greater impact on schizophrenia risk. Investigation of these and other substantiated susceptibility genes are providing valuable insight into the primary neurobiological mechanisms underlying schizophrenia, which may lead to novel therapeutic interventions for the disorder. In the meantime, several novel pharmacological strategies, including activation of mGluRs, elevation of synaptic glycine and inhibition of phosphodiesterase 10A, have recently shown promise for the treatment of schizophrenia in clinical trials.  相似文献   

17.
Schizophrenia is a common disorder with a high heritability, but its genetic architecture is still elusive.We implemented whole-genome sequencing(WGS) analysis of 8 families with monozygotic(MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations(DNMs) or inherited variants with susceptibility to schizophrenia. Eight non-synonymous DNMs(including one splicing site) were identified and shared by twins, which were either located in previously reported schizophrenia risk genes(p.V24689 I mutation in TTN, p.S2506 T mutation in GCN1L1, IVS3+1G T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis. By searching the inherited rare damaging or loss-of-function(LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes, we were able to distill genetic alterations in several schizophrenia risk genes, including GAD1, PLXNA2, RELN and FEZ1. Four inherited copy number variations(CNVs; including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families, respectively. Most of families carried both missense DNMs and inherited risk variants, which might suggest that DNMs, inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility. Our results support that schizophrenia is caused by a combination of multiple genetic factors, with each DNM/variant showing a relatively small effect size.  相似文献   

18.
Chen C  Tan B  Zhou Y  Zhou J  He Y  Li S  Ying B  Qin L 《DNA and cell biology》2012,31(6):988-992
Schizophrenia is a severe psychiatric disorder. Although its exact cause is unknown, it is widely accepted that environmental factors and genes integrate in the pathogenesis of schizophrenia. 19q13, which contains IL-28B, is a newly identified potential susceptibility locus. IL-28B is a cytokine that functionally has anti-viral activity, but, structurally, is related to the interleukin-10 family. Both virus infection and cytokine changes have been documented in schizophrenia. We selected the single-nucleotide polymorphism rs8099917, which is associated with IL-28B gene expression, to study its relationship to the susceptibility to schizophrenia. A total of 256 Chinese patients with schizophrenia and 329 healthy controls were studied. Both genotype and allele frequencies showed significant differences between patients and normal subjects (p=0.03 and p=0.04, respectively). Our study suggested that the frequency of allele T was a risk factor for the susceptibility of schizophrenia (odds ratio [OR]=1.76, 95% confidence interval [CI]=1.03-3.03). When all subjects were grouped by symptoms, both the genotype and the allele frequency were associated with patients having disorganized speech (genotype: χ(2)=5.75, p=0.02; allele: χ(2)=5.41, p=0.02, OR=3.67, 95% CI=1.14-11.82) and negative symptoms (genotype: χ(2)=5.09, p=0.02; allele: χ(2)=4.80, p=0.03, OR=1.95, 95% CI=1.06-3.56) as well as cognitive symptoms (genotype: χ(2)=5.97, p=0.02; allele: χ(2)=5.53, p=0.02, OR=2.04, 95% CI=1.11-3.74). The results in this study may lead to a better understanding of the etiology of schizophrenia.  相似文献   

19.
Bipolar, schizophrenia, and schizoaffective disorders are common, highly heritable psychiatric disorders, for which familial coaggregation, as well as epidemiological and genetic evidence, suggests overlapping etiologies. No definitive susceptibility genes have yet been identified for any of these disorders. Genetic heterogeneity, combined with phenotypic imprecision and poor marker coverage, has contributed to the difficulty in defining risk variants. We focused on families of Ashkenazi Jewish descent, to reduce genetic heterogeneity, and, as a precursor to genomewide association studies, we undertook a single-nucleotide polymorphism (SNP) genotyping screen of 64 candidate genes (440 SNPs) chosen on the basis of previous linkage or of association and/or biological relevance. We genotyped an average of 6.9 SNPs per gene, with an average density of 1 SNP per 11.9 kb in 323 bipolar I disorder and 274 schizophrenia or schizoaffective Ashkenazi case-parent trios. Using single-SNP and haplotype-based transmission/disequilibrium tests, we ranked genes on the basis of strength of association (P<.01). Six genes (DAO, GRM3, GRM4, GRIN2B, IL2RB, and TUBA8) met this criterion for bipolar I disorder; only DAO has been previously associated with bipolar disorder. Six genes (RGS4, SCA1, GRM4, DPYSL2, NOS1, and GRID1) met this criterion for schizophrenia or schizoaffective disorder; five replicate previous associations, and one, GRID1, shows a novel association with schizophrenia. In addition, six genes (DPYSL2, DTNBP1, G30/G72, GRID1, GRM4, and NOS1) showed overlapping suggestive evidence of association in both disorders. These results may help to prioritize candidate genes for future study from among the many suspected/proposed for schizophrenia and bipolar disorders. They provide further support for shared genetic susceptibility between these two disorders that involve glutamate-signaling pathways.  相似文献   

20.
Recent investigations suggest that the AKT/glycogen synthase kinase 3 (GSK3) signaling cascade may be associated with the pathophysiology of schizophrenia and methamphetamine (METH) use disorder. One important molecule related to this cascade is beta-arrestin 2 (ARRB2). We therefore conducted a genetic case-control association analysis of the gene for ARRB2 with schizophrenia and METH use disorder in a Japanese population (547 people with schizophrenia, 177 with METH use disorder and 546 controls). A possible association of 'tag single nucleotide polymorphisms (SNPs)' was found in METH use disorder (rs1045280: P(genotype) = 0.0118, P(allele) = 0.00351; rs2036657: P(allele) = 0.0431; rs4790694: P(genotype) = 0.0167, P(allele) = 0.0202), but no association was found with schizophrenia. We also evaluated the gene-gene interactions among ARRB2, AKT1, and GSK3B, which we previously reported for each of these diseases. However, no interaction was seen in our samples. This is the first association analysis of ARRB2, and our results indicate that ARRB2 may play a role in the pathophysiology of METH use disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号