首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探讨人野生型p53(wt-p53)基因增强大肠癌细胞化疗敏感性的分子生物学机制,将携带wt p53基因的质粒分别转染两种p53基因突变的人大肠癌细胞系HT-29及SW620,分析细胞中p53及细胞周期蛋白D1(cyclin D1)蛋白的表达水平;将化疗药物5 氟尿嘧啶(5-fluorouracil,5-FU)以不同浓度、不同时间分别作用于HT-29及SW620细胞,另外将已转染wt-p53基因的大肠癌细胞用5-FU进行诱导,Western印迹分析上述干预条件下细胞中p53蛋白及细胞周期蛋白D1表达水平的变化;流式细胞术检测wt p53基因联合5-FU组及对照组中细胞凋亡的改变情况.结果表明,wt-p53基因能增加癌细胞中细胞周期蛋白D1的表达,与wt-p53基因呈剂量依赖性关系;5-FU则降低其蛋白表达,与5-FU呈时间和剂量依赖性关系,而5-FU所致的细胞周期蛋白D1表达水平的降低在细胞预先转染了wt- p53基因时会被抑制;wt-p53基因与5-FU联合使用能提高大肠癌细胞凋亡率.结果提示,wt-p53基因可提高大肠癌细胞中细胞周期蛋白D1的表达水平,并抑制5-FU所致的细胞周期蛋白D1降解,从而提高大肠癌细胞对化疗药物5-FU的敏感性.  相似文献   

2.
Previous studies from our group have shown that the expression levels of Orc6 were highly elevated in colorectal cancer patient specimens and the induction of Orc6 was associated with 5-fluorouracil (5-FU) treatment. The goal of this study was to investigate the molecular and cellular impact of Orc6 in colon cancer. In this study, we use HCT116 (wt-p53) and HCT116 (null-p53) colon cancer cell lines as a model system to investigate the impact of Orc6 on cell proliferation, chemosensitivity and pathways involved with Orc6. We demonstrated that the down regulation of Orc6 sensitizes colon cancer cells to both 5-FU and cisplatin (cis-pt) treatment. Decreased Orc6 expression in HCT-116 (wt-p53) cells by RNA interference triggered cell cycle arrest at G1 phase. Prolonged inhibition of Orc6 expression resulted in multinucleated cells in HCT-116 (wt-p53) cell line. Western immunoblot analysis showed that down regulation of Orc6 induced p21 expression in HCT-116 (wt-p53) cells. The induction of p21 was mediated by increased level of phosphorylated p53 at ser-15. By contrast, there is no elevated expression of p21 in HCT-116 (null-p53) cells. Orc6 down regulation also increased the expression of DNA damaging repair protein GADD45β and reduced the expression level of JNK1. Orc6 may be a potential novel target for future anti cancer therapeutic development in colon cancer.  相似文献   

3.
Development of drug resistance is one of the major causes of colorectal cancer recurrence, yet mechanistic understanding and therapeutic options remain limited. Here, we show that expression of microRNA (miR)-520g is correlated with drug resistance of colon cancer cells. Ectopic expression of miR-520g conferred resistance to 5-fluorouracil (5-FU)- or oxaliplatin-induced apoptosis in vitro and reduced the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicated that miR-520g mediated drug resistance through down-regulation of p21 expression. Moreover, p53 suppressed miR-520g expression, and deletion of p53 up-regulated miR-520g expression. Inhibition of miR-520g in p53−/− cells increased their sensitivity to 5-FU treatment. Importantly, studies of patient samples indicated that expression of miR-520g correlated with chemoresistance in colorectal cancer. These findings indicate that the p53/miR-520g/p21 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of miR-520g or restoration of p21 expression may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, especially in those with mutant p53.  相似文献   

4.
We examined chemosensitivity to 5-fluorouracil (5-FU) in four human gastric cancer cell lines, by analyzing the expression of p53 and its related genes. Treatment with 1mM 5-FU induced variable degrees of apoptosis in the cultured cells. The apoptotic indices 72 h after treatment were approximately 14% in MKN-74 (wild-type p53 gene), 12% in MKN-45 (wild-type), 3% in MKN-28 (mutated) and 0.5% in KATO-III cells (deleted), respectively. On the other hand, 50 M 5-FU had little effect on the induction of apoptosis in MKN-74 cells, the value being approximately 2% after 72 h. Induction of P53 expression was noted 3 h after initiating the treatment, followed by the induction of P21/Waf1 after 6 h in both MKN-74 and MKN-45 cells. The same expression mode was noted in MKN-74 treated with 50 M 5-FU. Conversely, the level of P53 expression was constant in MKN-28 cells and absent in KATO-III cells, in which P21/Waf1 had never been induced. The Bax/Bcl-2 expression ratio was gradually elevated for up to 72 h in MKN-74 and MKN-45 cells treated with 1mM 5-FU; in contrast, it was unchanged in MKN-28 and KATO-III cells, and MKN-74 treated with 50 M 5-FU. These results might indicate that (1) 1mM 5-FU induces apoptosis in cultured gastric cancer cells carrying the wild-type p53 gene, but not those carrying the mutated type or a gene deletion, and (2) the elevated Bax/Bcl-2 expression ratio plays a more crucial role than the higher expression of P21/Waf1 in the induction of p53- gene dependent apoptosis.  相似文献   

5.
6.
BACKGROUND: p53 is frequently mutated in many cancers including human head and neck squamous cell carcinoma and pancreatic cancer. In tumor models, wild-type (wt) p53 gene transfer induces apoptosis and tumor regression in vivo, justifying the extensive clinical investigation of p53 gene therapy. METHODS: p53 nonviral-mediated gene transfer was achieved using glucosylated polyethylenimine (PEI) in conjunction with photochemical internalisation (PCI). Experimental conditions were optimised using the green fluorescent protein (GFP) as a reporter. p53 gene transfer was then evaluated using semi-quantitative RT-PCR in p53-deleted PANC3 and p53-mutated FaDu cell lines. Following gene transfer, induction of apoptosis was investigated using phosphatidylserine externalisation and nuclear fragmentation assays. Induction of long-term cell death was analysed using colony-forming assays. RESULTS: PCI was found to enhance GFP gene transfer after 48 h in both cell lines. Whether using glucosylated-PEI alone or associated with PCI, p53 gene transfer was achieved with subsequent recovery of p53 mRNA expression in PANC3 cells and a significant 4-fold increase in p53 mRNA expression in FaDu cells. PCI was found to further enhance p53 mRNA expression by 2.3-fold in PANC3 cells. Spontaneous induction of apoptosis following wt-p53 gene transfer was achieved in both cell lines. PCI was found to enhance apoptosis up to levels similar to those achieved with chemotherapy. As a consequence, long-term cell death was significantly enhanced after wt-p53 gene transfer when PCI was used in both cell lines, yielding up to 60% cell death. CONCLUSIONS: PCI increases glucosylated-PEI-mediated p53 gene transfer, apoptosis as well as cell death in mutant p53 human cancer cells.  相似文献   

7.
目的探讨miR-34a-5p通过靶基因GMFB调控神经嵴细胞的增殖。 方法通过荧光定量PCR检测miR-34a-5p在先天性巨结肠症(HSCR)和正常结肠组织中的表达,并通过双荧光素酶报告基因检测miR-34a-5p的靶基因,SH-SY5Y细胞转染miR-34a-5p mimics及对照miR-NC,并转染GMFB表达载体,通过CCK8检测miR-34a-5p和GMFB对神经嵴细胞增殖的影响,并通过Western Blot检测miR-34a-5p对GMFB蛋白表达的影响。采用t检验和单因素方差分析。 结果荧光定量PCR结果显示,HSCR结肠组中miR-34a-5p的相对表达量为0.43±0.10,低于正常结肠组1.15±0.18,差异具有统计学意义(t = 3.50,P < 0.01)。CCK8结果显示,miR-34a-5p mimics组细胞在培养24?h和48?h后细胞A450值分别为0.53±0.03和0.87±0.04,低于miR-NC对照组0.87±0.03,1.42±0.04。双荧光素酶报告基因实验结果显示,miR-34a-5p mimics与GMFB 3'UTR WT载体共转染组荧光强度为0.44±0.03,低于对照miR-NC与WT载体共转染组1.02±0.06。CCK8结果所示,miR-34a-5p mimics+GMFB组细胞培养24?h和48?h后,A450值分别为0.99±0.02和1.50±0.03,高于miR-34a-5p mimics组0.53±0.03, 0.87±0.04,差异具有统计学意义(t?=?7.07,P < 0.01;t?=?9.14,P < 0.01)。Western Blot检测结果显示,miR-34a-5p mimics组细胞的GMFB蛋白表达量为0.25±0.01,低于miR-NC对照组0.90±0.03,差异具有统计学意义(t?=?35.60,P < 0.01),miR-34a-5p mimics+GMFB组细胞GMFB蛋白表达量为1.03±0.03,高于miR-34a-5p mimics组0.25±0.01,差异具有统计学意义(t?=?42.74,P < 0.01)。 结论miR-34a-5p能够通过抑制靶基因GMFB的表达,抑制神经嵴细胞SH-SY5Y的增殖。  相似文献   

8.
乳腺癌耐药蛋白(breast cancer resistance protein,BCRP)是ATP结合盒转运蛋白超家族成员之一,其通过主动外排化疗药物如米托蒽醌、托泊替康和甲氨蝶呤,进而介导肿瘤化疗耐受. 最近有研究发现,在野生型p53(wild type p53, wt-p53)低表达的乳腺癌细胞系MCF-7中,外源性wt-p53通过抑制核转录因子-κB (nuclear factor-κB, NF-κB)的活性进而抑制BCRP的表达,但其详细的分子机制有待进一步阐明. 本研究选用p53缺失的骨肉瘤细胞系Saos-2,通过瞬时转染技术发现,wt-p53可以激活BCRP的表达,而突变型p53的激活作用消失;报告基因试验显示,wt-p53可以上调BCRP启动子活性;通过生物信息学软件MatInspector对BCRP启动子区进行预测,未发现p53结合元件;同时,通过转染IκB抑制Saos-2细胞中NF-κB的活性后发现,Saos-2细胞中NF-κB活性越低,p53对BCRP启动子的激活作用越弱甚至完全消失. 上述结果提示,p53对Saos-2细胞中BCRP的激活作用是NF-κB依赖性的.  相似文献   

9.
Metallothioneins (MTs) are a ubiquitous low-molecular weight, cysteine rich proteins with a high affinity for metal ions. The expression and induction of MTs have been associated with protection against DNA damage, oxidative stress, and apoptosis. Our past research had shown that p53 is an important factor in metal regulation of MTs. The present study was undertaken to explore further the interrelationship between p53 and MTs. We investigated whether silencing of p53 could affect expression pattern of basal and copper induced metallothioneins. The silencing of wild-type p53 (wt-p53) in epithelial breast cancer MCF7 cells affected the basal level of MT-2A RNA, whereas the levels of MT-1A and MT-1X RNA remained largely unchanged. The expression of MT-3 was undetectable in MCF7 with either functional or silenced p53. MCF7 cells with silenced wt-p53 failed to upregulate MT-2A in response to copper and showed a reduced sensitivity toward copper induced cell apoptotic death. Similarly in MCF7-E6 and MDA-MB-231 cells, the presence of inactive/mutated p53 halted MT-1A and MT-2A gene expression in response to copper. Constitutive expression of MT-3 RNA was detectable in the presence of mutated p53 (mtp53). Transient transfection of MDA-MB-231 cells with wt-p53 enabled copper induced upregulation of both MT-1A and MT-2A but not basal level of MT-2A, MT-1E, MT-1X and MT-3. Inactivation of p53 in HepG2 cells amplified the basal expression of studied MT isoforms, including MT-3, as well as copper-induced mRNA expression of MTs except MT-1H and MT-3. Presented data demonstrate a direct relation between p53 and MT-1A and MT-2A and they also indicate that wt-p53 might be a negative regulator of MT-3 in epithelial cancer cells.  相似文献   

10.
11.
12.
Previous studies by our laboratory have reported that the T cell receptor (TCR) TCR/CD3 complex could mediate activation as well as apoptosis of T lymphocytes. Two tyrosine residues in the ITAM (immuno-receptor tyrosine-based activation motifs) of CD3 epsilon were required for apoptosis signalling of Jurkat T lymphocytes. Stable cell lines TJK and T3JK produced from CD8(-) Jurkat T lymphocytes by transfection with wild-type and mutant CD8 epsilon (fusion of the extracellular and transmembrane domains of human CD8 alpha to the intracellular domain of mouse CD3 epsilon), were used with CD8(-) Jurkat T lymphocytes for studying the role of single intact CD3 epsilon. 5-Fluorouracil (5-FU), a chemotherapeutic drug can induce cell death of many tumour cell lines. In the present experiments, we examined the expression of caspase-3, p53 and Bid in the three cell lines induced by 5-FU and/or anti-CD8 antibody. We found high expression of p53 during activation-induced cell death of TJK cells mediated by anti-CD8 antibody and apoptosis of TJK and T3JK induced by 5-FU, implicating p53 involvement in apoptosis of leukemia cells induced by anti-CD8 antibody and 5-FU. We also detected the active form of caspase-3 and Bid in apoptotic leukemia cells after treatment with 5-FU and/or anti-CD8 antibody, indicating that the drug and antibody induced cell death through caspase-3 and the signal pathway may involve the Bcl-2 protein family. Our results showed that combined treatment with 5-FU and anti-CD8 antibody could enhance the rate of apoptosis induced by 5-FU or anti-CD8 antibody through increased expression of p53 and by promoting activation of caspase-3 and Bid. This suggests that the combination of 5-FU and anti-CD8 antibody may play an important role in inducing apoptosis of leukemia cells.  相似文献   

13.
Much effort is currently focused on the p53 pathway. p53 is a key tumor suppressor, which is mutated or lost in many human cancers. Restoration of the p53 pathway holds the potential to induce selective cell death in tumor cells without harming normal cells that have intact p53 pathways. Most tumor cells express mutated p53 or suppress p53 by overexpression of MDM2. In this study, a compound referred to as CB002 with one closely related compound from the Chembridge library were evaluated for tumor cytotoxicity without affecting normal cells by restoration of the p53 pathway. A decrease of mutant p53 protein expression, restoration of inactivated p53, or some activation of p73 are candidate mechanisms this agent could cause tumor cell apoptosis and growth arrest. We further show that CB002 activates p53 pathway signaling in part via p73 in p53 mutant cancer cell lines. However, it is important to note that we have not established a role for p73 in the anti-tumor effect of CB002 or R1. CB002 causes tumor cell death with synergistic effects with traditional chemotherapeutics CPT-11 and 5-FU.  相似文献   

14.
15.
16.
p53负调控前列腺癌细胞中PC-1基因的表达   总被引:1,自引:0,他引:1  
在前列腺癌进展中发生的PC-1基因表达失调和p53基因突变,提示这两个事件之间可能存在的联系.用依托泊苷处理前列腺癌LNCaP细胞后,PC-1蛋白的表达受抑制;瞬时转染分析表明野生型p53负调控PC-1启动子的转录活性;缺失突变分析将PC-1基因启动子上受p53负调控的区域定位在翻译起始位点上游757 bp~323 bp之间.缺失PC-1启动子上的雄激素受体反应元件并没有消除p53对其转录活性的抑制作用;无论p53是否存在,组蛋白去乙酰化酶抑制剂TSA处理LNCaP细胞后可以导致PC-1启动子转录活性升高.因此,p53和去乙酰化酶可以独立抑制PC-1启动子活性.这些研究结果表明,野生型p53负调控PC-1基因启动子的转录活性,而前列腺癌进展过程中p53突变可能和PC-1基因的表达失调有关.  相似文献   

17.
Calcineurin binding protein 1 (Cabin1) is a natural inhibitor of calcineurin (CN). Moreover, Cabin1 retards tumor cell apoptosis by regulating p53. This study was designed to observe the expression of Cabin1 during podocyte injury, as well as its relationship with p53. Sprague-Dawley rats were used for the establishment of 5/6 nephrectomized rat model. Sham-operated rats underwent ventral laparotomy without nephrectomy. Then, rats were sacrificed at 8 and 12 weeks after nephrectomy. WT-1, a podocyte nuclear protein, was used for indicating the localization of Cabin1 in glomeruli. As tacrolimus protects podocyte via inhibiting AngiotensinII (AngII) induced CN activation. Cultured podocytes were injured by AngII or restored by tacrolimus. The protein expression and localization was detected by western blot or immunofluorescence staining. Cabin1 was knocked down by siRNA in cultured podocytes. In 5/6 nephrectomized rats, the colocalization of Cabin1 and WT-1 became more obviously in podocyte nuclei. Cabin1 protein was markedly increased in rats at 8 and 12 weeks after nephrectomy, as well as in AngII injured podocytes at 48?h (0.99?±?0.12 in AngII group versus 0.80?±?0.16 in control group). Cabin1 and p53 colocalized in cultured podocyte nuclei, p53 expression was significantly decreased (0.21?±?0.05 in siRNA group versus 0.31?±?0.05 in negative control group) after Cabin1 was being knocked down. In conclusion, Cabin1 expression significantly increases during podocyte injury. Knockdown of Cabin1 induces p53 expression decrease in cultured podocyte. Cabin1 may provide a new target to investigate podocyte injury.  相似文献   

18.
BACKGROUND: Methylmercury (MeHg), a ubiquitous environmental contaminant, is a known potent teratogen selectively affecting the developing central nervous system. While a definitive mechanism for MeHg-induced developmental neurotoxicity remains elusive, in utero exposure has been associated with reduced brain weight and reduction in cell number. This suggests early toxicant interference with critical molecular signaling events controlling cell behavior, i.e., proliferation. METHODS: To examine the role of p53, a major regulator of the G(1)/S and G(2)/M cell cycle checkpoints, in MeHg toxicity, we isolated GD 14 primary embryonal fibroblasts from homozygous wild-type p53 (p53+/+) and homozygous null p53 (p53-/-) mice. Cells were treated at passages 4-7 for 24 or 48 hr with 0, 1.0, or 2.5 microM MeHg and analyzed for effects on viability, cell cycle progression (using BrdU-Hoechst flow cytometric analysis), and apoptosis via annexin V-FITC and propidium iodide (PI) staining. RESULTS: The p53+/+ cells are more sensitive than p53-/- cells to MeHg-induced cytotoxicity, cell cycle inhibition, and induction of apoptosis: at 24 hr, 2.5 microM MeHg reduced p53+/+ cell viability to 72.6% +/- 3.2%, while p53-/- viability was 94.6% +/- 0.4%. The p53-/- cells underwent less necrosis and less apoptosis following MeHg treatment. MeHg (2.5 microM) also halted all cycling in the p53+/+ cells, while 42.6% +/- 7.2% of p53-/- cells were able to reach a new G(0)/G(1) in 48 hr. Time- and dose-dependent accumulation of cells in G(2)/M phase (1.0 and 2.5 microM MeHg) was observed independent of the p53 genotype; however, the magnitude of change was p53-dependent. CONCLUSIONS: These studies suggest that MeHg-induced cell cycle arrest occurs via both p53-dependent and -independent pathways in our model system; however, cell death resulting from MeHg exposure is highly dependent on p53.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号