首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
European hedgehogs, Erinaceus europaeus and E. concolor, are among the many European plant and animal taxa that have been subjected to cyclical restriction to glacial refugia and interglacial expansion. An analysis of 95 mitotypes, comprising partial cytochrome b and control region sequences, shows deep divergence between the two hedgehog species. Three europaeus and two concolor clades are clearly identified and are consistent with previously identified refugia for Europe: the Iberian peninsula, Italy, and the Balkans. The degree of mitochondrial divergence among these clades suggests pre-Pleistocene separation of the refugial populations. In contrast, analysis of two nuclear introns clearly separates the two concolor clades, as in the mitochondrial data, but cannot discriminate the three europaeus clades. This discrepancy between nuclear and mitochondrial data is attributed to historical differences in the refugial population size of europaeus and concolor. The geographical distribution of mitotypes is analysed using nested clade analysis. This method, by including unobserved ('missing') mitotypes, can identify mitotype groupings that remain undetected in conventional analyses. However, the application of nested clade analysis to the study of refugial populations may be hampered by such factors as the loss of haplotypes from the refugial areas by repeated contractions of the population and the recent time scale of colonization relative to mutation rate.  相似文献   

2.
Mitochondrial DNA phylogeography of European hedgehogs   总被引:8,自引:0,他引:8  
European hedgehog populations belonging to Erinaceus europaeus and E . concolor have been investigated by mitochondrial DNA analysis. A 383 bp fragment of the cytochrome b gene has been sequenced and maximum parsimony and neighbour-joining trees of Tamura–Nei genetic distance values have been constructed. Similar topologies have been produced by both methods, showing a deep divergence between E . europaeus and E . concolor and a further subdivision of each species into a western and an eastern clade. A comparison with previously published allozyme data is made, and concordant and discordant patterns are discussed. The influence of Pleistocene glaciations on the observed pattern of divergence is inferred.  相似文献   

3.
The Major Histocompatibility Complex (MHC) is a large multigene coding for glycoproteins that play a key role in the initiation of immune responses in vertebrates. The exon 2 region of the MHC DQB locus was analyzed using 160 finless porpoises from 5 populations in Japanese waters. The 5 populations were based on a previous mitochondrial DNA control region analysis, which showed distinct geographical separation. Eight DQB alleles were detected, and the geographical distribution of the alleles indicated that most of them are shared among the populations. Heterozygosity of the DQB alleles in each population ranged from 0.55 to 0.78, and for all 5 populations was 0.78. Low MHC variability is not a common feature in marine mammals, but the finless porpoise populations inhabiting coastal waters had a relatively high MHC heterozygosity. Balancing selection in the MHC DQB alleles of the finless porpoise was indicated by the higher rate of nonsynonymous than synonymous substitutions for PBR; however, an excess of hetrozygotes compared to expectation was not observed. This suggests that the MHC DQB locus in the finless porpoise may have been under balancing selection for a long evolutionary time period, and is influenced by genetic drift beyond the effect of balancing selection for short time periods in small local populations.  相似文献   

4.
The distinct distribution of the west European hedgehog Erinaceus europaeus and the northern white-breasted hedgehog Erinaceus roumanicus and their separate refugial origins after the Pleistocene is a well-known example in the zoogeography of the Holarctic. Among the Late Quaternary faunal assemblages, the west European hedgehog is recorded at 269 sites whereas the northern white-breasted hedgehog is recorded only at 52 sites in Europe. The distribution patterns of the temporal and spatial Glacial records of the west European hedgehog show a general trend: a strong restriction to glacial refugia (the Iberian and Italian Peninsulas) during the Weichselian Glacial until the end of the Last Glacial Maximum, and a colonization of southern France during the early Late Glacial between 14 000 and 125 00 14C years BP (15 000–12 800 cal. BC). Whereas the British Isles could have already been colonised by the end of the Pre-Boreal, in the rest of Central Europe E. europaeus was clearly distributed there in the Boreal for the first time. The west European hedgehog is an absolute Holocene faunal element in Central Europe. It appears in most parts of Central Europe during the Early Holocene, when the west European hedgehog met its eastern relative, which probably was similarly sensitive. After meeting each other, the distribution limit of both Erinaceus species in Central Europe seems to have been relatively constant in its geographic extent. Because of the clear climatic correlation, E. europaeus should be considered as an indicator species for temperate climatic conditions of the Holocene fauna. This should be considered during the reconstruction of climatic conditions with the help of the analysis of quaternary faunal material.  相似文献   

5.
Increased global temperature and associated changes to Arctic habitats will likely result in the northward advance of species, including an influx of pathogens novel to the Arctic. How species respond to these immunological challenges will depend in part on the adaptive potential of their immune response system. We compared levels of genetic diversity at a gene associated with adaptive immune response [Class II major histocompatibility complex (MHC), DQB exon 2] between populations of walrus (Odobenus rosmarus), a sea ice-dependent Arctic species. Walrus was represented by only five MHC DQB alleles, with frequency differences observed between Pacific and Atlantic populations. MHC DQB alleles appear to be under balancing selection, and most (80 %; n = 4/5) of the alleles were observed in walruses from both oceans, suggesting broad scale differences in the frequency of exposure and diversity of pathogens may be influencing levels of heterozygosity at DQB in walruses. Limited genetic diversity at MHC, however, suggests that walrus may have a reduced capacity to respond to novel immunological challenges associated with shifts in ecological communities and environmental stressors predicted for changing climates. This is particularly pertinent for walrus, since reductions in summer sea ice may facilitate both northward expansion of marine species and associated pathogens from more temperate regions, and exchange of marine mammals and associated pathogens through the recently opened Northwest Passage between the Atlantic and Pacific Oceans in the Canadian high Arctic.  相似文献   

6.
主要组织相容性复合体(Major histocompatibility complex,MHC) 基因是由一组紧密连锁的基因组成,是哺乳动物免疫系统中最重要的组成部分。本文选择3 个MHC 基因座位的第二外元,即:MHC-I 类基因和II 类基因的DRA 和DQB 座位,初步调查濒危物种中华白海豚的遗传变异。共鉴定了2 个DRA、2 个DQB 和7 MHC-I等位基因。DRA 座位遗传变异非常低,而DQB 和MHC-I 座位具有相对较高水平的遗传变异。并且,在DQB 和MHC-I 基因座位的假定的抗原结合位点(Antigen binding sites,ABS),非同义替代明显大于同义替代,提示平衡选择(Balancing selection)维持这两个座位的多态性,而在DRA 座位上,并没有检测到平衡选择。系统发生分析表明中华白海豚的MHC 等位基因没有聚在一起,而是和其他的物种聚在一起,符合MHC 跨种进化(Transspecies evolution)的模式。  相似文献   

7.
Genetic variation plays a significant role in maintaining the evolutionary potential of a species. Comparing the patterns of adaptive and neutral diversity in extant populations is useful for understanding the local adaptations of a species. In this study, we determined the fine-scale genetic structure of 6 extant populations of the giant panda (Ailuropoda melanoleuca) using mtDNA and DNA fingerprints, and then overlaid adaptive variations in 6 functional Aime-MHC class II genes (DRA, DRB3, DQA1, DQA2, DQB1, and DQB2) on this framework. We found that: (1) analysis of the mtDNA and DNA fingerprint-based networks of the 6 populations identified the independent evolutionary histories of the 2 panda subspecies; (2) the basal (ancestral) branches of the fingerprint-based Sichuan-derived network all originated from the smallest Xiaoxiangling (XXL) population, suggesting the status of a glacial refuge in XXL; (3) the MHC variations among the tested populations showed that the XXL population exhibited extraordinary high levels of MHC diversity in allelic richness, which is consistent with the diversity characteristics of a glacial refuge; (4) the phylogenetic tree showed that the basal clades of giant panda DQB sequences were all occupied by XXL-specific sequences, providing evidence for the ancestor-resembling traits of XXL. Finally, we found that the giant panda had many more DQ alleles than DR alleles (33∶13), contrary to other mammals, and that the XXL refuge showed special characteristics in the DQB loci, with 7 DQB members of 9 XXL-unique alleles. Thus, this study identified XXL as a glacial refuge, specifically harboring the most number of primitive DQB alleles.  相似文献   

8.
Pathogen-driven balancing selection maintains high genetic diversity in many vertebrates, particularly in the major histocompatibility complex (MHC) immune system gene family, which is often associated with disease susceptibility. In large natural populations where subpopulations face different pathogen pressures, the MHC should show greater genetic differentiation within a species than neutral markers. We examined genetic diversity at the MHC-DQB locus and nine putatively neutral microsatellite markers in grey seals (Halichoerus grypus) from eight United Kingdom (UK) colonies, the Faeroe Islands and Sable Island, Canada. Five DQB alleles were identified in grey seals, which varied in prevalence across the grey seal range. Among the seal colonies, significant differences in DQB allele and haplotype frequencies and in average DQB heterozygosity were observed. Additionally, the DQB gene exhibited greater differentiation among colonies compared with neutral markers, yet a weaker pattern of isolation by distance (IBD). After correcting for the underlying IBD pattern, subpopulations breeding in similar habitats were more similar to one another in DQB allele frequencies than populations breeding in different habitats, but the same did not hold true for microsatellites, suggesting that habitat-specific pathogen pressure influences MHC evolution. Overall, the data are consistent with selection at MHC-DQB loci in grey seals with both varying selective pressures and geographic population structure appearing to influence the DQB genetic composition of breeding colonies.  相似文献   

9.
Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite‐mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection (“trans‐species polymorphism”), or alternatively favouring the independent emergence of functionally similar alleles post‐speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut–parasite communities in four sympatric lemurs. We tested for parasite‐MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co‐ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC‐parasite co‐evolution should be envisaged at the community level. We further show that balancing selection maintaining trans‐species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.  相似文献   

10.
The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene ΨDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (ΨDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (ΨDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (ΨDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d N (DQB 1.476, DRB1 1.724, and ΨDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
We used the widely distributed freshwater fish, perch (Perca fluviatilis), to investigate the postglacial colonization routes of freshwater fishes in Europe. Genetic variability within and among drainages was assessed using mitochondrial DNA (mtDNA) D-loop sequencing and RAPD markers from 55 populations all over Europe as well as one Siberian population. High level of structuring for both markers was observed among drainages and regions, while little differentiation was seen within drainages and regions. Phylogeographic relationships among European perch were determined from the distribution of 35 mtDNA haplotypes detected in the samples. In addition to a distinct southern European group, which includes a Greek and a southern Danubian population, three major groups of perch are observed: the western European drainages, the eastern European drainages including the Siberian population, and Norwegian populations from northern Norway, and western side of Oslofjord. Our data suggest that present perch populations in western and northern Europe were colonized from three main refugia, located in southeastern, northeastern and western Europe. In support of this, nested cladistic analysis of mtDNA clade and nested clade distances suggested historical range expansion as the main factor determining geographical distribution of haplotypes. The Baltic Sea has been colonized from all three refugia, and northeastern Europe harbours descendants from both eastern European refugia. In the upper part of the Danube lineages from the western European and the southern European refugia meet. The southern European refugium probably did not contribute to the recolonization of other western and northern European drainages after the last glaciation. However, phylogenetic analyses suggest that the southern European mtDNA lineage is the most ancient, and therefore likely to be the founder of all present perch lineages. The colonization routes used by perch probably also apply to other freshwater species with similar distribution patterns.  相似文献   

12.
Polymorphism of PBRs of the major histocompatibility complex (MHC) genes is well recognized, but the polymorphism also extends to proximal promoter regions. Examining DQB1 variability in dogs and wolves, we identified 7 promoter variants and 13 exon 2 alleles among 89 dogs, including a previously unknown DQB1 exon 2 allele, and 8 promoter variants and 9 exon 2 alleles among 85 wolves. As expected from previous studies and from a close chromosomal location, strong linkage disequilibrium was demonstrated in both wolves and dogs by having significantly fewer promoter/exon 2 combinations than expected from simulations of randomized data sets. Interestingly, we noticed weaker haplotypic associations in dogs than in wolves. Dogs had twice as many promoter/exon 2 combinations as wolves and an almost 2-fold difference in the number of exon 2 alleles per promoter variant. This difference was not caused by an admixture of breeds in our group of dogs because the high ratio of observed to expected number of haplotypes persisted within a single dog breed, the German Shepherd. Ewens-Watterson tests indicated that both the promoter and exon 2 are under the balancing selection, and both regions appear to be more recently derived in the dog than in the wolf. Hence, although reasons for the differences are unknown, they may relate to altered selection pressure on patterns of expression. Deviations from normal MHC expression patterns have been associated with autoimmune diseases, which occur frequently in several dog breeds. Further knowledge about these deviations may help us understand the source of such diseases.  相似文献   

13.
Maintaining effective immune response is an essential factor in the survival of small populations. One of the most important immune gene regions is the highly polymorphic major histocompatibility complex (MHC). We investigated how a population bottleneck and recovery have influenced the diversity and selection in three MHC class II loci, DLA‐DRB1, DLA‐DQA1 and DLA‐DQB1, in the Finnish wolf population. We studied the larger Russian Karelian wolf population for comparison and used 17 microsatellite markers as reference loci. The Finnish and Karelian wolf populations did not differ substantially in their MHC diversities ( = 0.047, P = 0.377), but differed in neutral microsatellite diversities ( = 0.148, P = 0.008). MHC allele frequency distributions in the Finnish population were more even than expected under neutrality, implying balancing selection. In addition, an excess of nonsynonymous compared to synonymous polymorphisms indicated historical balancing selection. We also studied association between helminth (Trichinella spp. and Echinococcus canadensis) prevalence and MHC diversity at allele and SNP level. MHC‐heterozygous wolves were less often infected by Trichinella spp. and carriers of specific MHC alleles, SNP haplotypes and SNP alleles had less helminth infections. The associated SNP haplotypes and alleles were shared by different MHC alleles, which emphasizes the necessity of single‐nucleotide‐level association studies also in MHC. Here, we show that strong balancing selection has had similar effect on MHC diversities in the Finnish and Russian Karelian wolf populations despite significant genetic differentiation at neutral markers and small population size in the Finnish population.  相似文献   

14.
Cutrera AP  Lacey EA 《Immunogenetics》2007,59(12):937-948
Balancing selection acting over the evolutionary history of a lineage can result in the retention of alleles among species for longer than expected under neutral evolution. The associated pattern of trans-species polymorphism, in which similar or even identical alleles are shared among species, is often used to infer that balancing selection has occurred. The genes of the major histocompatibility complex (MHC) are thought to be subject to balancing selection that maintains alleles associated with response to specific pathogens. To explore the role of balancing selection in shaping MHC diversity in ctenomyid rodents, we examined allelic variability at the class II DRB and DQA loci in 18 species in the genus Ctenomys. Previous studies of four of these species had revealed significant within-population evidence of positive selection on MHC loci. The current study expands upon these analyses to (1) evaluate among-species evidence of positive selection and (2) explore the potential for balancing selection on MHC genes. Interspecific nucleotide sequence variation revealed significant evidence of positive selection on the DRB and DQA loci. At the same time, comparisons of phylogenetic trees for these MHC loci with a putative species tree based on mitochondrial sequence data revealed multiple examples of trans-specific polymorphism, including sharing of identical DRB and DQA alleles among distantly related species of Ctenomys. These findings suggest that MHC genes in these animals have historically been subject to balancing selection and yield new insights into the complex suite of forces shaping MHC diversity in free-living vertebrates.  相似文献   

15.
N Scotti  S Cozzolino  T Cardi 《Génome》2007,50(8):706-713
The European cultivated potato, Solanum tuberosum subsp. tuberosum, has 6 related cultivated species and more than 200 wild relatives. In Solanum spp., studies of cytoplasmic organelles have been mainly confined to the plastid DNA composition of cultivated and wild species. In this study, 53 genotypes of 30 potato species belonging to the subsections Estolonifera and Potatoe, 2 tomato species, and a black nightshade genotype were examined using PCR markers to evaluate mitochondrial DNA diversity and assess whether mtDNA variability was correlated with series classification, geographical origin, ploidy, and endosperm balance number (EBN). The markers used revealed interspecific mtDNA variability in Solanum spp. and identified 13 different haplotypes. Intraspecific variability was also observed in a few species and genomic regions. Cluster analysis allowed arrangement of the 13 haplotypes into 7 subgroups, and statistical association tests showed significant relationships between mitochondrial patterns detected by molecular analysis and ploidy, EBN, and geographical origin. On the whole, the evolutionary patterns for the genomic regions analyzed reflected the species relationships established on the basis of morphological and molecular (nuclear and plastidial DNA) data. The mtDNA variability shown is also important for better characterization of genetic resources for potato breeding.  相似文献   

16.
The major histocompatibility class (MHC) DQ molecules are dimeric glycoproteins revealing antigen presentation to CD4+ T cells. In the present study, the exon 2 of the MHC class II DQB gene from 32 yaks (Bos grunniens) was cloned, sequenced and compared with previously reported patterns for other bovidae. It was revealed by sequence analyses that there are 25 DQB exon 2 alleles among 32 yaks, all alleles are found to belong to DQB1 loci. These alleles exhibited a high degree of nucleotide and amino acid polymorphisms with most amino acid variations occurring at positions forming the peptide-binding sites. The DQB loci were analyzed for patterns of synonymous (d S) and non-synonymous (d N) substitution. The yak was observed to be under strong positive selection in the DQB exon 2 peptide-binding sites (d N = 0.15, P < 0.001). It appears that this variability among yaks confers the ability to mount immune responses to a wide variety of peptides or pathogens.  相似文献   

17.
MHC class II genes in European wolves: a comparison with dogs   总被引:5,自引:5,他引:0  
The genome of the grey wolf, one of the most widely distributed land mammal species, has been subjected to both stochastic factors, including biogeographical subdivision and population fragmentation, and strong selection during the domestication of the dog. To explore the effects of drift and selection on the partitioning of MHC variation in the diversification of species, we present nine DQA, 10 DQB, and 17 DRB1 sequences of the second exon for European wolves and compare them with sequences of North American wolves and dogs. The relatively large number of class II alleles present in both European and North American wolves attests to their large historical population sizes, yet there are few alleles shared between these regions at DQB and DRB1. Similarly, the dog has an extensive array of class II MHC alleles, a consequence of a genetically diverse origin, but allelic overlap with wolves only at DQA. Although we might expect a progression from shared alleles to shared allelic lineages during differentiation, the partitioning of diversity between wolves and dogs at DQB and DRB1 differs from that at DQA. Furthermore, an extensive region of nucleotide sequence shared between DRB1 and DQB alleles and a shared motif suggests intergenic recombination may have contributed to MHC diversity in the Canidae.  相似文献   

18.
Sequence variability at three major histocompatibility complex (MHC) genes (DQB, DRA, and MHC-I) of cetaceans was investigated in order to get an overall understanding of cetacean MHC evolution. Little sequence variation was detected at the DRA locus, while extensive and considerable variability were found at the MHC-I and DQB loci. Phylogenetic reconstruction and sequence comparison revealed extensive sharing of identical MHC alleles among different species at the three MHC loci examined. Comparisons of phylogenetic trees for these MHC loci with the trees reconstructed only based on non-PBR sites revealed that allelic similarity/identity possibly reflected common ancestry and were not due to adaptive convergence. At the same time, trans-species evolution was also evidenced that the allelic diversity of the three MHC loci clearly pre-dated species divergence events according to the relaxed molecular clock. It may be the forces of balancing selection acting to maintain the high sequence variability and identical alleles in trans-specific manner at the MHC-I and DQB loci.  相似文献   

19.
On the basis of a general low polymorphism, several studies suggest that balancing selection in the class II major histocompatibility complex (MHC) is weaker in marine mammals as compared with terrestrial mammals. We investigated such differential selection among Cetacea, Artiodactyla, and Primates at exon 2 of MHC-DQB gene by contrasting indicators of molecular evolution such as occurrence of transpecific polymorphisms, patterns of phylogenetic branch lengths by codon position, rates of nonsynonymous and synonymous substitutions as well as accumulation of variable sites on the sampling of alleles. These indicators were compared between the DQB and the mitochondrial cytochrome b gene (cytb) as a reference of neutral expectations and differences between molecular clocks resulting from life history and historical demography. All indicators showed that the influence of balancing selection on the DQB is more variable and overall weaker for cetaceans. In our sampling, ziphiids, the sperm whale, monodontids and the finless porpoise formed a group with lower DQB polymorphism, while mysticetes exhibited a higher DQB variation similar to that of terrestrial mammals as well as higher occurrence of transpecific polymorphisms. Different dolphins appeared in the two groups. Larger variation of selection on the cetacean DQB could be related to greater stochasticity in their historical demography and thus, to a greater complexity of the general ecology and disease processes of these animals.  相似文献   

20.
Aim We investigated Quaternary range dynamics of two closely related but ecologically divergent species (cold‐tolerant Edraianthus serpyllifolius and thermophilic Edraianthus tenuifolius) with overlapping distribution ranges endemic to the western Balkan Peninsula, an important yet understudied Pleistocene refugium. Our aims were: to test predictions of the ‘refugia‐within‐refugia’ model of strong genetic subdivisions due to population isolation in separate refugia; to explore whether two ecologically divergent species reacted differently to Pleistocene climatic fluctuations; and to test predictions of the displacement refugia model of stronger differentiation among populations in the thermophilic E. tenuifolius compared with the cold‐tolerant E. serpyllifolius. Location The western Balkan Peninsula. Methods We gathered amplified fragment‐length polymorphism (AFLP) data and plastid DNA sequences from two to five individuals from 10 populations of E. serpyllifolius and 22 populations of E. tenuifolius, spanning their entire respective distribution areas. AFLP data were analysed using a Bayesian clustering approach and a distance‐based network approach. Plastid sequences were used to depict relationships among haplotypes in a statistical parsimony network, and to obtain age estimates in a Bayesian framework. Results In E. serpyllifolius, both AFLP and plastid sequence data showed clear geographic structure. Western populations showed high AFLP diversity and a high number of rare fragments. In E. tenuifolius, both markers congruently identified a major phylogeographic split along the lower Neretva valley in central Dalmatia. The most distinct and earliest diverging chloroplast DNA (cpDNA) haplotypes were found further south in the south‐easternmost populations. North‐western populations, identified as a separate cluster by Bayesian clustering, were characterized by low genetic diversity and a low number of rare AFLP markers. Main conclusions Clear evidence for multiple Pleistocene refugia is found not only in the high‐elevation E. serpyllifolius, but also in the lowland E. tenuifolius, despite the lack of obvious dispersal barriers, in line with the refugia‐within‐refugia model. Genealogical relationships and genetic diversity patterns support the hypothesis that cold‐adapted E. serpyllifolius responded to climatic oscillations mostly by elevational range shifts, whereas thermophilic E. tenuifolius did so mainly by latitudinal range shifts, with different phases (and probably extents) of range expansion. In contrast to the displacement refugia hypothesis, the two elevationally differentiated species do not differ in their genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号