首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.  相似文献   

2.
The cell cycle inhibitor p15(INK4b) is frequently inactivated by homozygous deletion together with p16(INK4a) and p19(ARF) in some types of tumors. Although the tumor suppressor capability of p15(INK4b) is still questioned, it has been found to be specifically inactivated by hypermethylation in hematopoietic malignancies in the absence of p16(INK4a) alterations. Here we show that, in vitro, p15(INK4b) is a strong inhibitor of cellular transformation by Ras. Surprisingly, p15(INK4b) is induced in cultured cells by oncogenic Ras to an extent similar to that of p16(INK4a), and their expression is associated with premature G(1) arrest and senescence. Ras-dependent induction of these two INK4 genes is mediated mainly by the Raf-Mek-Erk pathway. Studies with activated and dominant negative forms of Ras effectors indicate that the Raf-Mek-Erk pathway is essential for induction of both the p15(INK4b) and p16(INK4a) promoters, although other Ras effector pathways can collaborate, giving rise to a stronger response. Our results indicate that p15(INK4b), by itself, is able to stop cell transformation by Ras and other oncogenes such as Rgr (a new oncogene member of the Ral-GDS family, whose action is mediated through Ras). In fact, embryonic fibroblasts isolated from p15(INK4b) knockout mice are susceptible to transformation by the Ras or Rgr oncogene whereas wild-type embryonic fibroblasts are not. Similarly, p15(INK4b)-deficient mouse embryo fibroblasts are more sensitive than wild-type cells to transformation by a combination of the Rgr and E1A oncogenes. The cell cycle inhibitor p15(INK4b) is therefore involved, at least in some cell types, in the tumor suppressor activity triggered after inappropriate oncogenic Ras activation in the cell.  相似文献   

3.
Saikosaponin a, a purified ingredient of Chinese herb with known antitumor activity, can inhibit cell growth and DNA synthesis of hepatoma cell line HepG2. Both mRNA and protein of the CDK inhibitor p-16(INK4a) and p-15(INK4b) in HepG2 were greatly induced by saikosaponin a while that of p-21(CIP), p-27(KIP) and other cell cycle related genes were not. In addition, reduced phosphorylation of RB protein is observed in saikosaponin a-treated HepG2. Staurosporin, one of the PKC inhibitors, significantly prevented the saikosaponin a induced growth inhibition suggesting PKC pathway be involved. On the other hand, the phorbol ester tumor promoter TPA (12-O-Tetredecanolyphorbol 13-acetate) also inhibited HepG2 growth and specifically induced p-16(INK4a) and p-15(INK4b) mRNA expression. The results suggest that both saikosaponin a and TPA-induced HepG2 growth inhibition are associated with p-15(INK4a) and p-16(INK4b) gene expression and might be mediated by PKC signaling pathway.  相似文献   

4.
Cyclin-dependent kinases 4, 6 and 2 (Cdk4/6/2), are proteins that lead progression through the G1-S transition, a step strictly regulated in the process of cell proliferation. The p16(INK4a) tumor suppressor, whose expression is inhibited in a high number of cancers, binds to Cdk4/6 and inhibits phosphorylation of the retinoblastoma protein, forcing cells to remain in the G1 phase and therefore, arresting cell division. Accordingly, the design of small compounds mimicking the inhibition of p16(INK4a) appears to be a promising way to treat cancer. In order to get some insight into the key interactions governing recognition between different cyclin-dependent kinases and the p16(INK4a) tumor suppressor, the present work reports the results of molecular dynamics simulations of both, the Cdk6-p16(INK4a) complex and the Cdk4-p16(INK4a) complex, respectively at 300 K. Most of the key interactions observed, were already anticipated in the analysis of the crystal structure of Cdk6-p16(INK4a). However, a few different features found out from the analysis of these calculations provide a better understanding of the role of the T-loop conformation, a fragment of Cdks, and the way the ATP binding-site is distorted upon binding of p16(INK4a).  相似文献   

5.
To screen genes involved in P15(INK4b) regulation during cell cycle, differential display method was applied to compare mRNAs from G(1) synchronized cells of MLIK6, which overexpressed P15(INK4b) gene, and its control MLC2. By using this approach, 15 cDNA fragments that were preferentially expressed in MLIK6 cells, but not in MLC2 cells, were screened out. A novel gene named P15RS was identified with further analysis. Combining the sequence from DD-PCR, homology analysis against EST database and RACE, a 4,404 bp complete cDNA sequence of P15RS was generated. Sequence analysis revealed that P15RS cDNA encoded a 312-amino-acid peptide containing a RAR domain that is involved in regulation of nuclear pre-mRNA, which suggests that P15RS may be a nuclear regulation protein. Genomic sequence analysis demonstrated that human P15RS gene was localized on chromosome 18q12 with seven exons and six introns. Expressing antisense P15RS in MLIK6 cells can up-regulate the expression of cyclinD1 and cyclinE. These data indicate that P15RS may act as a negative regulator in G(1) phase.  相似文献   

6.
Previous studies have shown that the p16(INK4a) tumor suppressor gene is inactivated in up to 98% of human pancreatic cancer specimens and 83% of oral squamous cell carcinomas. Inactivation of the related p15(INK4b) gene has also been identified in a number of tumors and cell lines, however, its role as an independent tumor suppressor remains to be elucidated. Chemically-induced tumors in the Syrian Golden hamster (Mesocricetus auratus) have been shown to be excellent representative models for the comparative development and progression of a number of human malignancies. The purpose of this study was to determine the importance of the p16(INK4a) and p15(INK4b) genes in two experimental hamster models for human pancreatic and oral carcinogenesis. First, hamster p16(INK4a) and p15(INK4b) cDNAs were cloned and sequenced. The hamster p16(INK4a) cDNA open reading frame (ORF) shares 78%, 80%, and 81% identity with the human, mouse, and rat p16(INK4a) sequences, respectively. Similarly, the hamster p15(INK4b) cDNA ORF shares 82% and 89% sequence identity with human and mouse p15(INK4b), respectively. Second, a deletion analysis of hamster p16(INK4a) and p15(INK4b) genes was performed for several tumorigenic and non-tumorigenic hamster cell lines and revealed that both p16(INK4a) and p15(INK4b) were homozygously deleted in a cheek pouch carcinoma cell line (HCPC) and two pancreatic adenocarcinoma cell lines (KL5B, H2T), but not in tissue matched, non-tumorigenic cheek pouch (POT2) or pancreatic (KL5N) cell lines. These data strongly suggest that homozygous deletion of the p16(INK4a) and p15(INK4b) genes plays a prominent role in hamster pancreatic and oral tumorigenesis, as has been well established in correlative studies in comparable human tumors. Furthermore, this study supports the comparative importance of the hamster pancreatic and cheek pouch models of carcinogenesis in subsequent mechanistic-, therapeutic-, and preventive-based studies aimed at providing important translational data applicable to pancreatic adenocarcinoma and oral squamous cell carcinoma in humans.  相似文献   

7.
抑制P18^INK4C表达对胃腺癌细胞侵袭的影响   总被引:2,自引:0,他引:2  
应用基因芯片技术筛选胃腺癌转移相关基因的过程中 ,发现CDK抑制因子 (CKI)P18INK4C在人类胃腺癌转移细胞株RF 4 8中的表达 ,较其原发灶细胞株RF 1明显下调。这提示 ,P18INK4C表达差异与胃腺癌细胞的侵袭转移 ,可能有一定程度的相关性。为此 ,通过反义RNA技术抑制在RF 1中的表达 ,研究其对胃腺癌原发灶细胞体外运动、侵袭转移能力以及生长特性的影响 ,进一步明确P18INK4C与人类胃腺癌侵袭转移之间的关系。结果发现 ,抑制P18INK4C的表达 ,可以使胃腺癌原发灶细胞的体外侵袭能力明显增加 ,抑制前RF 1细胞的体外侵袭能力仅为抑制后的 4 4 %。然而 ,RF 1的细胞周期和生长增殖能力 ,并未因为P18INK4C表达的改变而受到影响。上述结果提示 ,P18INK4C参与人类胃腺癌转移过程 ;在此过程中 ,其主要的作用可能并不是调节细胞周期 ,而是与胃腺癌原发灶细胞侵袭转移能力的调节密切相关。  相似文献   

8.
9.
INK4d-deficient mice are fertile despite testicular atrophy   总被引:4,自引:0,他引:4       下载免费PDF全文
The INK4 family of cyclin-dependent kinase (CDK) inhibitors includes four 15- to 19-kDa polypeptides (p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d)) that bind to CDK4 and CDK6. By disrupting cyclin D-dependent holoenzymes, INK4 proteins prevent phosphorylation of the retinoblastoma protein and block entry into the DNA-synthetic phase of the cell division cycle. The founding family member, p16(INK4a), is a potent tumor suppressor in humans, whereas involvement, if any, of other INK4 proteins in tumor surveillance is less well documented. INK4c and INK4d are expressed during mouse embryogenesis in stereotypic tissue-specific patterns and are also detected, together with INK4b, in tissues of young mice. INK4a is expressed neither before birth nor at readily appreciable levels in young animals, but its increased expression later in life suggests that it plays some checkpoint function in response to cell stress, genotoxic damage, or aging per se. We used targeted gene disruption to generate mice lacking INK4d. These animals developed into adulthood, had a normal life span, and did not spontaneously develop tumors. Tumors did not arise at increased frequency in animals neonatally exposed to ionizing radiation or the carcinogen dimethylbenzanthrene. Mouse embryo fibroblasts, bone marrow-derived macrophages, and lymphoid T and B cells isolated from these animals proliferated normally and displayed typical lineage-specific differentiation markers. Males exhibited marked testicular atrophy associated with increased apoptosis of germ cells, although they remained fertile. The absence of tumors in INK4d-deficient animals demonstrates that, unlike INK4a, INK4d is not a tumor suppressor but is instead involved in spermatogenesis.  相似文献   

10.
ECRG1 is a novel candidate of tumor suppressor gene identified from human esophagus. To study the biological role of ECRG1 gene, we performed a GAL4-based yeast two-hybrid screen of a human fetal liver cDNA library. Using the ECRG1 cDNA as bait, we identified two putative clones as associated proteins, Miz-1 and FLNA (Filamin A). The interaction of ECRG1 and Miz-1 was confirmed by glutathione-S-transferase (GST)-pull-down assays in vitro and co-immunoprecipitation experiments in vivo. ECRG1 was co-localized with Miz-1 in nucleus, as shown by confocal microscopy. Transfection of ECRG1 gene into the esophageal cancer (EC) cells inhibited cell proliferation and induced G1 phase arrest of cell cycle. In the co-transfection of ECRG1 and Miz-1 assays, we found inhibition of cell proliferation and G1/S phase in EC cells, but the levels of cell proliferation inhibition and G1/S phase arrest were more strongly compared with the transfection of ECRG1 or Miz-1 alone. In addition, the interaction of ECRG1 and Miz-1 could induce expression of P15(INK4b) gene in esophageal cancer 9706 (EC9706) cells. However, the transfection of ECRG1 or Miz-1 alone was not revealed the expressions of P15(INK4b) gene. When antisense ECRG1 interdicted expression of endogenous ECRG1 in Balb/c-3T3 cells, Transfection of Miz-1 couldn't induce P15(INK4b) expression. The results provide evidences that ECRG1 and Miz-1 in EC cells may be acting as a co-functional protein associated with regulation of cell cycle and induction of P15(INK4b) expression. It suggests that ECRG1 may inhibit tumor cell growth by affecting cell cycle, and that expression of P15(INK4b) may be likely to enhance G1 cell cycle arrest during the interaction of ECRG1 and Miz-1. The physical interaction of ECRG1 and Miz-1 may play an important role in carcinogenesis of EC.  相似文献   

11.
Progression through the eukaryotic cell cycle is driven by the activity of cyclin-dependent kinases. The cyclin D-dependent kinase Cdk4 promotes progression through the G(1) phase of the cell cycle and is deregulated in many human tumors. The tumor suppressor protein p16(INK4A) (p16) forms a complex with Cdk4 and inhibits kinase activity. Here we report that p16 is phosphorylated, and the phosphorylated form of p16 is preferentially associated with Cdk4 in normal human fibroblasts. We mapped phosphorylation sites on exogenously overexpressed p16 to serines 7, 8, 140, and 152 and found that endogenous p16 associated with Cdk4 is phosphorylated at serine 152. All mapped phosphorylation sites lie outside of the conserved kinase-binding domain of p16 but in regions of the protein affected by mutations in familial and sporadic cancer. Our results suggest a novel regulation of p16 activity.  相似文献   

12.
p16(INK4a), p15(INK4b), p18(INK4c) and p19(INK4d) comprise a family of cyclin-dependent kinase inhibitors and tumor suppressors. We report that the INK4 proteins share the ability to arrest cells in G1, and interact with CDK4 or CDK6 with similar avidity. In contrast, only p18 and particularly p19 are phosphorylated in vivo, and each of the human INK4 proteins shows unique expression patterns dependent on cell and tissue type, and differentiation stage. Thus, the INK4 proteins harbor redundant as well as non-overlapping properties, suggesting distinct regulatory modes, and diverse roles for the individual INK4 family members in cell cycle control, cellular differentiation, and multistep oncogenesis.  相似文献   

13.
14.
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. The long-term effect of progestins on T-47D breast cancer cells is inhibition of cellular proliferation. This is accompanied by decreased G(1) cyclin-dependent kinase (CDK) activities, redistribution of the CDK inhibitor p27(Kip1) among these CDK complexes, and alterations in the elution profile of cyclin E-Cdk2 upon gel filtration chromatography, such that high-molecular-weight complexes predominate. This study aimed to determine the relative contribution of CDK inhibitors to these events. Following progestin treatment, the majority of cyclin E- and D-CDK complexes were bound to p27(Kip1) and few were bound to p21(Cip1). In vitro, recombinant His(6)-p27 could quantitatively reproduce the effects on cyclin E-Cdk2 kinase activity and the shift in molecular weight observed following progestin treatment. In contrast, cyclin D-Cdk4 was not inhibited by His(6)-p27 in vitro or p27(Kip1) in vivo. However, an increase in the expression of the Cdk4/6 inhibitor p18(INK4c) and its extensive association with Cdk4 and Cdk6 were apparent following progestin treatment. Recombinant p18(INK4c) led to the reassortment of cyclin-CDK-CDK inhibitor complexes in vitro, with consequent decrease in cyclin E-Cdk2 activity. These results suggest a concerted model of progestin action whereby p27(Kip1) and p18(INK4c) cooperate to inhibit cyclin E-Cdk2 and Cdk4. Since similar models have been developed for growth inhibition by transforming growth factor beta and during adipogenesis, interaction between the Cip/Kip and INK4 families of inhibitors may be a common theme in physiological growth arrest and differentiation.  相似文献   

15.
在应用基因芯片技术筛选胃腺癌转移相关基因的过程中 ,发现CDK抑制因子P18INK4C在人类胃腺癌转移细胞株RF 4 8中的表达较其原发灶细胞株RF 1明显下调 .这提示P18INK4C表达差异与胃腺癌细胞的侵袭转移可能有一定程度的相关性 .通过构建P18INK4C 表达质粒并将其转染入RF 4 8增强P18INK4C的表达 ,研究其对胃腺癌原发灶细胞体外运动、侵袭转移能力以及生长特性的影响 ,进一步明确P18INK4C与人类胃腺癌侵袭转移之间的关系 .结果发现 ,增强P18INK4C表达可以使胃腺癌原发灶细胞的体外侵袭能力明显下降 ,而对RF 4 8的细胞周期和生长增殖能并力未产生影响 .上述结果提示 ,P18INK4C参与人类胃腺癌转移过程 ,在此过程中其主要的作用可能并不是调节细胞周期 ,而是与胃腺癌原发灶细胞侵袭转移能力的调节密切相关 .  相似文献   

16.
The inhibitors of cyclin-dependent kinase (CDK) 4 (INK4) bind CDK4/6 to prevent their association with D-cyclins and G(1) cell cycle initiation and progression. We report here that among the seven CDK inhibitors, p18(INK4c) played an important role in modulating TCR-mediated T cell proliferation. Loss of p18(INK4c) in T cells led to hyperproliferation in response to CD3 stimulation. p18(INK4c)-null mice developed lymphoproliferative disorder and T cell lymphomas. Expression of IL-2, IL-2R-alpha, and the major G(1) cell cycle regulatory proteins was not altered in p18-null T cells. Both FK506 and rapamycin efficiently inhibited proliferation of p18-null T cells. In activated T cells, p18(INK4c) remained constant, and preferentially associated with and inhibited CDK6 but not CDK4. We propose that p18(INK4c) sets an inhibitory threshold in T cells and one function of CD28 costimulation is to counteract the p18(INK4c) inhibitory activity on CDK6-cyclin D complexes. The p18(INK4c) protein may provide a novel target to modulate T cell immunity.  相似文献   

17.
18.
Indole-3-carbinol (I3C) is a naturally occurring compound found in vegetables such as broccoli and cauliflower, and has been shown to arrest human tumor cells in the G1 phase of the cell cycle. However, the molecular mechanism responsible for this effect has not been sufficiently elucidated. We report here that I3C activates the cyclin-dependent kinase (CDK) inhibitor p15INK4b gene through its promoter, accompanied by cell growth inhibition in HaCaT cells. Treatment with I3C almost did not affect the expressions of the other CDK inhibitors such as p19INK4d, p21WAF1 and p27Kip1. These results suggest that p15INK4b is an important molecular target of I3C among CDK inhibitors.  相似文献   

19.
Cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors.  相似文献   

20.
The transition from G1 to S phase in the cell cycle is highly regulated by Cdk4 and Cdk6, which in turn is inhibited by the tumor suppressor p16INK4a. Replacement of lost p16INK4a activity in cancer cells via gene therapy has worked in vivo to decrease tumor progression; however, practical issues limit gene therapy applications at this time. Here, we report the discovery of compounds that inhibit Cdk4 and Cdk6 activity. The NMR structure of a peptide that exhibits p16INK4a activity was solved and combined with known functional data to generate a pharmacophore that was used to mine the NCI chemical database. The hits were filtered utilizing the program Qikprop. Four compounds were subsequently shown to inhibit Cdk4 and/or Cdk6 with IC50 in the μM range. These compounds form lead compounds upon which further cell cycle inhibitors can be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号