首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.  相似文献   

2.
Infectious bursal disease virus (IBDV), a double-stranded RNA (dsRNA) virus belonging to the Birnaviridae family, is an economically important avian pathogen. The IBDV capsid is based on a single-shelled T=13 lattice, and the only structural subunits are VP2 trimers. During capsid assembly, VP2 is synthesized as a protein precursor, called pVP2, whose 71-residue C-terminal end is proteolytically processed. The conformational flexibility of pVP2 is due to an amphipathic alpha-helix located at its C-terminal end. VP3, the other IBDV major structural protein that accomplishes numerous roles during the viral cycle, acts as a scaffolding protein required for assembly control. Here we address the molecular mechanism that defines the multimeric state of the capsid protein as hexamers or pentamers. We used a combination of three-dimensional cryo-electron microscopy maps at or close to subnanometer resolution with atomic models. Our studies suggest that the key polypeptide element, the C-terminal amphipathic alpha-helix, which acts as a transient conformational switch, is bound to the flexible VP2 C-terminal end. In addition, capsid protein oligomerization is also controlled by the progressive trimming of its C-terminal domain. The coordination of these molecular events correlates viral capsid assembly with different conformations of the amphipathic alpha-helix in the precursor capsid, as a five-alpha-helix bundle at the pentamers or an open star-like conformation at the hexamers. These results, reminiscent of the assembly pathway of positive single-stranded RNA viruses, such as nodavirus and tetravirus, add new insights into the evolutionary relationships of dsRNA viruses.  相似文献   

3.
Infectious bursal disease virus (IBDV) is an avian pathogen responsible for an acute immunosuppressive disease that causes major losses to the poultry industry. Despite having a bipartite dsRNA genome, IBDV, as well as other members of the Birnaviridae family, possesses a single capsid layer formed by trimers of the VP2 capsid protein. The capsid encloses a ribonucleoprotein complex formed by the genome associated to the RNA-dependent RNA polymerase and the RNA-binding polypeptide VP3. A previous report evidenced that expression of the mature VP2 IBDV capsid polypeptide triggers a swift programmed cell death response in a wide variety of cell lines. The mechanism(s) underlying this effect remained unknown. Here, we show that VP2 expression in HeLa cells activates the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), which in turn triggers the phosphorylation of the eukaryotic initiation factor 2α (eIF2α). This results in a strong blockade of protein synthesis and the activation of an apoptotic response which is efficiently blocked by coexpression of a dominant negative PKR polypeptide. Our results demonstrate that coexpression of the VP3 polypeptide precludes phosphorylation of both PKR and eIF2α and the onset of programmed cell death induced by VP2 expression. A mutation blocking the capacity of VP3 to bind dsRNA also abolishes its capacity to prevent PKR activation and apoptosis. Further experiments showed that VP3 functionally replaces the host-range vaccinia virus (VACV) E3 protein, thus allowing the E3 deficient VACV deletion mutant WRΔE3L to grow in non-permissive cell lines. According to results presented here, VP3 can be categorized along with other well characterized proteins such us VACV E3, avian reovirus sigmaA, and influenza virus NS1 as a virus-encoded dsRNA-binding polypeptide with antiapoptotic properties. Our results suggest that VP3 plays a central role in ensuring the viability of the IBDV replication cycle by preventing programmed cell death.  相似文献   

4.
5.
In many viruses, a precursor particle, or procapsid, is assembled and undergoes massive chemical and physical modification to produce the infectious capsid. Capsid assembly and maturation are finely tuned processes in which viral and host factors participate. We show that the precursor of the VP2 capsid protein (pVP2) of the infectious bursal disease virus (IBDV), a double-stranded RNA virus, is processed at the C-terminal domain (CTD) by a host protease, the puromycin-sensitive aminopeptidase (PurSA). The pVP2 CTD (71 residues) has an important role in determining the various conformations of VP2 (441 residues) that build the T = 13 complex capsid. pVP2 CTD activity is controlled by co- and posttranslational proteolytic modifications of different targets by the VP4 viral protease and by VP2 itself to yield the mature VP2-441 species. Puromycin-sensitive aminopeptidase is responsible for the peptidase activity that cleaves the Arg-452-Arg-453 bond to generate the intermediate pVP2-452 polypeptide. A pVP2 R453A substitution abrogates PurSA activity. We used a baculovirus-based system to express the IBDV polyprotein in insect cells and found inefficient formation of virus-like particles similar to IBDV virions, which correlates with the absence of puromycin-sensitive aminopeptidase in these cells. Virus-like particle assembly was nonetheless rescued efficiently by coexpression of chicken PurSA or pVP2-452 protein. Silencing or pharmacological inhibition of puromycin-sensitive aminopeptidase activity in cell lines permissive for IBDV replication caused a major blockade in assembly and/or maturation of infectious IBDV particles, as virus yields were reduced markedly. PurSA activity is thus essential for IBDV replication.  相似文献   

6.
The infectious bursal disease virus (IBDV), a member of the Birnaviridae family, containing a bisegmented double-stranded RNA genome, encodes four structural viral proteins, VP1, VP2, VP3, and VP4, as well as a non-structural protein, VP5. In the present paper, the segment A from two IBDV strains,field isolate ZJ2000 and attenuated strain HZ2, were inserted into one NaeⅠ site by site-directed silent mutagenesis and subcloned into the eukaryotic expression plasmid pCI under the control of the human cytomegalovirus (hCMV) immediate early enhancer and promoter to construct the recombinant plasmids pCI-AKZJ2000 and pCI-AKHZ2, respectively. Each of the two recombinants was combined with another recombinant pCI plasmid containing the marked segment B of strain HZ2 (pCI-mB), and injected intramuscularly into nonimmunized chickens. Two chimeric IBDV strains were recovered from the chickens. Two out of eight chickens in each of two groups showed the bursal histopathological change. The reassortant virus derived from pCI-AKZJ2000/pCI-mB can infect chicken embryos and shows relatively low virulence. We have developed a novel virus reverse genetic approach for the study of IBDV. The results also form the basis for investigating the role of VP1 in viral replication and pathogenecity.  相似文献   

7.
Zheng X  Hong L  Li Y  Guo J  Zhang G  Zhou J 《DNA and cell biology》2006,25(11):646-653
VP1, the RNA-dependent RNA polymerase of infectious bursal disease virus (IBDV), has been suggested to play an essential role in the replication and translation of viral RNAs. In this study, we first expressed the complete VP1 protein gene in Escherichia coli (E. coli), and then the produced polyclonal antibody and four monoclonal antibodies (mAbs) to recombinant VP1 protein (rVP1) were shown to bind the IBDV particles in chicken embryo fibroblast and Vero cells. The epitopic analysis showed that mAbs 1D4 and 3C7 recognized respectively two distinct antigenic epitopes on the rVP1 protein, but two pair of mAbs 1A2/2A12 and 1E1/1H3 potentially recognized another two topologically related epitopes. Immunocytochemical stainings showed that VP1 protein formed irregularly shaped particles in the cytoplasm of the IBDV-infected cells. These results demonstrated that the mAbs to rVP1 protein could bind the epitopes of IBDV particles, indicating that the rVP1 protein expressed in E. coli was suitable for producing the mAb to VP1 protein of IBDV, and that the cytoplasm could be the crucial site for viral genome replication of IBDV.  相似文献   

8.
A cDNA corresponding to the coding region of VP1, the putative RNA-dependent RNA polymerase, of infectious bursal disease virus (IBDV) was cloned and inserted into the genome of a vaccinia virus inducible expression vector. The molecular mass and antigenic reactivity of VP1 expressed in mammalian cells are identical to those of its counterpart expressed in IBDV-infected cells. The results presented here demonstrate that VP1 is efficiently incorporated into IBDV virus-like particles (VLPs) produced in mammalian cells coexpressing the IBDV polyprotein and VP1. Incorporation of VP1 into VLPs requires neither the presence of IBDV RNAs nor that of the nonstructural polypeptide VP5. Immunofluorescence, confocal laser scanning microscopy, and immunoprecipitation analyses conclusively showed that VP1 forms complexes with the structural polypeptide VP3. Formation of VP1-VP3 complexes is likely to be a key step for the morphogenesis of IBDV particles.  相似文献   

9.
Infectious bursal disease virus (IBDV) is a nonenveloped virus with an icosahedral capsid composed of two proteins, VP2 and VP3, that derive from the processing of the polyprotein NH(2)-pVP2-VP4-VP3-COOH. The virion contains VP1, the viral polymerase, which is both free and covalently linked to the two double-stranded RNA (dsRNA) genomic segments. In this study, the virus assembly process was studied further with the baculovirus expression system. While expression of the wild-type polyprotein was not found to be self-sufficient to give rise to virus-like particles (VLPs), deletion or replacement of the five C-terminal residues of VP3 was observed to promote capsid assembly. Indeed, the single deletion of the C-terminal glutamic acid was sufficient to induce VLP formation. Moreover, fusion of various peptides or small proteins (a green fluorescent protein or a truncated form of ovalbumin) at the C terminus of VP3 also promoted capsid assembly, suggesting that assembly required screening of the negative charges at the C terminus of VP3. The fused polypeptides mimicked the effect of VP1, which interacts with VP3 to promote VLP assembly. The C-terminal segment of VP3 was found to contain two functional domains. While the very last five residues of VP3 mainly controlled both assembly and capsid architecture, the five preceding residues constituted the VP1 (and possibly the pVP2/VP2) binding domain. Finally, we showed that capsid formation is associated with VP2 maturation, demonstrating that the protease VP4 is involved in the virus assembly process.  相似文献   

10.
A E Smith  R Kamen  W F Mangel  H Shure  T Wheeler 《Cell》1976,9(3):481-487
The 19S and 16S polyoma virus late mRNAs have been separated on sucrose-formamide density gradients and translated in vitro. The 16S RNA codes only for polyoma capsid protein VP1, while the 19S RNA codes in addition for capsid protein VP2. Since the 19S and 16S species have been previously mapped on the viral genome, these results allow us to deduce the location of the sequences coding for VP1 and VP2. Comparison of the chain lengths of the capsid proteins with the size of the viral mRNAs coding for them suggests that VP1 and VP2 are entirely virus-coded. Purified polyoma 19S RNA directs the synthesis of very little VP1 in vitro, although it contains all the sequences required to code for the protein. The initiation site for VP1 synthesis which is located at an internal position on the messenger is probably inactive either because it is inaccessible or because it lacks an adjacent "capped" 5' terminus. Similar inactive internal initiation sites have been reported for other eucarotic viral mRNAs (for example, Semliki forest virus, Brome mosaic virus, and tobacco mosaic virus), suggesting that while eucaryotic mRNAs may have more than one initiation site for protein synthesis, only those sites nearer the 5' terminus of the mRNA are active.  相似文献   

11.
12.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, encodes in its bisegmented double-stranded RNA genome four structural virion proteins, VP1, VP2, VP3, and VP4, as well as a nonstructural protein, VP5. Recently, the establishment of an infectious cRNA system for IBDV has been described (E. Mundt and V. N. Vakharia, Proc. Natl. Acad. Sci. USA 93:11131-11136, 1996). Here, we report the isolation of a VP5- IBDV mutant constructed by site-directed mutagenesis of the methionine start codon of VP5, followed by cRNA transfection. The resulting virus mutant was replication competent in cell culture, which indicates that VP5 is not required for productive replication of IBDV. Absence of VP5 expression was verified by lack of reactivity with newly established anti-VP5 monoclonal antibodies and polyclonal sera. VP5- IBDV exhibited a delay in replication in chicken embryo cells compared to the VP5+ parental virus. However, final yields were similar. Our results thus show that VP5 is nonessential for IBDV replication, which makes it a prime candidate for the construction of deleted, marked vaccines.  相似文献   

13.
Infectious bursal disease virus (IBDV), a double-stranded RNA virus, causes immunosuppression and high mortality in 3–6-week-old chickens. Innate immune defense is a physical barrier to restrict viral replication. After viral infection, the host shows crucial defense responses, such as stimulation of antiviral effectors to restrict viral replication. Here, we conducted RNA-seq in avian cells infected by IBDV and identified TRIM25 as a host restriction factor. Specifically, TRIM25 deficiency dramatically increased viral yields, whereas overexpression of TRIM25 significantly inhibited IBDV replication. Immunoprecipitation assays indicated that TRIM25 only interacted with VP3 among all viral proteins, mediating its K27-linked polyubiquitination and subsequent proteasomal degradation. Moreover, the Lys854 residue of VP3 was identified as the key target site for the ubiquitination catalyzed by TRIM25. The ubiquitination site destroyed enhanced the replication ability of IBDV in vitro and in vivo. These findings demonstrated that TRIM25 inhibited IBDV replication by specifically ubiquitinating and degrading the structural protein VP3.  相似文献   

14.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus that causes a highly contagious disease in young chickens leading to significant economic losses in the poultry industry. The VP2 protein, the only structural component of the IBDV icosahedral capsid, spontaneously assembles into T=1 subviral particles (SVP) when individually expressed as a chimeric gene. We have determined the crystal structure of the T=1 SVP to 2.60 A resolution. Our results show that the 20 trimeric VP2 clusters forming the T=1 shell are further stabilized by calcium ions located at the threefold icosahedral axes. The structure also reveals a new unexpected domain swapping that mediates interactions between adjacent trimers: a short helical segment located close to the end of the long C-terminal arm of VP2 is projected toward the threefold axis of a neighboring VP2 trimer, leading to a complex network of interactions that increases the stability of the T=1 particles. Analysis of crystal packing shows that the exposed capsid residues, His253 and Thr284, determinants of IBDV virulence and the adaptation of the virus to grow in cell culture, are involved in particle-particle interactions.  相似文献   

15.
Infectious bursal disease virus (IBDV) is a nonenveloped avian virus with a two-segment double-stranded RNA genome. Its T=13 icosahedral capsid is most probably assembled with 780 subunits of VP2 and 600 copies of VP3 and has a diameter of about 60 nm. VP1, the RNA-dependent RNA polymerase, resides inside the viral particle. Using a baculovirus expression system, we first observed that expression of the pVP2-VP4-VP3 polyprotein encoded by the genomic segment IBDA results mainly in the formation of tubules with a diameter of about 50 nm and composed of pVP2, the precursor of VP2. Very few virus-like particles (VLPs) and VP4 tubules with a diameter of about 25 nm were also identified. The inefficiency of VLP assembly was further investigated by expression of additional IBDA-derived constructs. Expression of pVP2 without any other polyprotein components results in the formation of isometric particles with a diameter of about 30 nm. VLPs were observed mainly when a large exogeneous polypeptide sequence (the green fluorescent protein sequence) was fused to the VP3 C-terminal domain. Large numbers of VLPs were visualized by electron microscopy, and single particles were shown to be fluorescent by standard and confocal microscopy analysis. Moreover, the final maturation process converting pVP2 into the VP2 mature form was observed on generated VLPs. We therefore conclude that the correct scaffolding of the VP3 can be artificially induced to promote the formation of VLPs and that the final processing of pVP2 to VP2 is controlled by this particular assembly. To our knowledge, this is the first report of the engineering of a morphogenesis switch to control a particular type of capsid protein assembly.  相似文献   

16.
Genome replication is a critical step in virus life cycles. Here, we analyzed the role of the infectious bursal disease virus (IBDV) VP3, a major component of IBDV ribonucleoprotein complexes, on the regulation of VP1, the virus-encoded RNA-dependent RNA polymerase (RdRp). Data show that VP3, as well as a peptide mimicking its C-terminal domain, efficiently stimulates the ability of VP1 to replicate synthetic single-stranded RNA templates containing the 3′ untranslated regions (UTRs) from the IBDV genome segments.  相似文献   

17.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is the causative agent of one of the most important infectious poultry diseases. Major aspects of the molecular biology of IBDV, such as assembly and replication, are as yet poorly understood. We have previously shown that encapsidation of the putative virus-encoded RNA-dependent RNA polymerase VP1 is mediated by its interaction with the inner capsid protein VP3. Here, we report the characterization of the VP1-VP3 interaction. RNase A treatment of VP1- and VP3-containing extracts does not affect the formation of VP1-VP3 complexes, indicating that formation of the complex requires the establishment of protein-protein interactions. The use of a set of VP3 deletion mutants allowed the mapping of the VP1 binding motif of VP3 within a highly charged 16-amino-acid stretch on the C terminus of VP3. This region of VP3 is sufficient to confer VP1 binding activity when fused to an unrelated protein. Furthermore, a peptide corresponding to the VP1 binding region of VP3 specifically inhibits the formation of VP1-VP3 complexes. The presence of Trojan peptides containing the VP1 binding motif in IBDV-infected cells specifically reduces infective virus production, thus showing that formation of VP1-VP3 complexes plays a critical role in IBDV replication.  相似文献   

18.
In vitro morphogenesis of foot-and-mouth disease virus.   总被引:5,自引:5,他引:0       下载免费PDF全文
Foot-and-mouth disease virion RNA is translated efficiently and completely in a rabbit reticulocyte lysate cell-free system. Treatment of cell-free lysates with monospecific serum prepared against the individual viral structural proteins or with monoclonal antibodies prepared against the inactivated virus or against a viral structural protein precipitated all of the structural proteins, suggesting that structural protein complexes were formed in vitro. Sucrose gradient analysis of the cell-free lysate indicated that complexes sedimenting at 5, 14, 60 to 70, and ca. 110S were assembled in vitro. Structural proteins VP0, VP1, and VP3 were the major polypeptides found in these complexes. The material sedimenting at 110S, i.e., containing VP0, VP1, and VP3, was precipitated by a 140S-specific monoclonal antibody but not by a 12S subunit-specific monoclonal antibody, suggesting that this capsid structure contained at least one epitope present on the intact virus.  相似文献   

19.
20.
Infectious pancreatic necrosis virus (IPNV), a member of the family Birnaviridae, infects young salmon, with a severe impact on the commercial sea farming industry. Of the five mature proteins encoded by the IPNV genome, the multifunctional VP3 has an essential role in morphogenesis; interacting with the capsid protein VP2, the viral double-stranded RNA (dsRNA) genome and the RNA-dependent RNA polymerase VP1. Here we investigate one of these VP3 functions and present the crystal structure of the C-terminal 12 residues of VP3 bound to the VP1 polymerase. This interaction, visualized for the first time, reveals the precise molecular determinants used by VP3 to bind the polymerase. Competition binding studies confirm that this region of VP3 is necessary and sufficient for VP1 binding, while biochemical experiments show that VP3 attachment has no effect on polymerase activity. These results indicate how VP3 recruits the polymerase into birnavirus capsids during morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号