首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Hydrons and electrons are substrates for the enzyme hydrogenase, but cannot be observed in X-ray crystal structures. High-resolution 1H electron nuclear double resonance (ENDOR) spectroscopy offers a means to detect the distribution of protons and unpaired electrons. ENDOR spectra were recorded from frozen solutions of the nickel-iron hydrogenases of Desulfovibrio gigas and Desulfomicrobium baculatum, in the "active" state ("Ni-C" EPR signal) and analyzed by orientationally selective simulation methods. The experimental spectra were fitted using a structural model of the nickel-iron centre based on crystallographic results, allowing for differences in electron spin distribution as well as the spatial orientation of the g-matrix ( g-tensor), and anisotropic and isotropic hyperfine couplings of the protons nearest to the nickel ion. ENDOR signals, detected after complete deuterium exchange, were assigned to six protons of the cysteines bound to nickel. The assignment took advantage of the substitution of a selenium for a sulfur ligand, which occurs naturally between the [NiFeSe] and [NiFe] hydrogenases from Dm. baculatum and D. gigas, respectively, and was found to affect just two signals. The four signals with the largest hyperfine couplings, including isotropic contributions from 4.5 to 13.5 MHz, were assigned to the beta-methylene protons of the two terminal cysteine ligands, one of which is substituted by seleno-cysteine in [NiFeSe] hydrogenase. The electron spin is delocalized onto the nickel (50%) and its sulfur ligands, with a higher proportion on the terminal than the bridging ligands. The g-matrix was found to align with the active site in such a way that the g1- g2 plane is nearly coplanar (18.3 degrees) with the plane defined by nickel and three sulfur atoms, and the g2 axis deviates by 22.9 degrees from the vector between nickel and iron. Significantly for the reaction of the enzyme, direct evidence for the binding of hydrons at the active site was obtained by the detection of H/D-exchangeable ENDOR signals.  相似文献   

2.
A hydrogenase operon was cloned from chromosomal DNA isolated from Desulfovibrio vulgaris Miyazaki F with the use of probes derived from the genes encoding [NiFe] hydrogenase from Desulfovibrio vulgaris Hildenborough. The nucleic acid sequence of the cloned DNA indicates this hydrogenase to be a two-subunit enzyme: the gene for the small subunit (267 residues; molecular mass = 28763 Da) precedes that for the large subunit (566 residues; molecular mass = 62495 Da), as in other [NiFe] and [NiFeSe] hydrogenase operons. The amino acid sequences of the small and large subunits of the Miyazaki hydrogenase share 80% homology with those of the [NiFe] hydrogenase from Desulfovibrio gigas. Fourteen cysteine residues, ten in the small and four in the large subunit, which are thought to co-ordinate the iron-sulphur clusters and the active-site nickel in [NiFe] hydrogenases, are found to be conserved in the Miyazaki hydrogenase. The subunit molecular masses and amino acid composition derived from the gene sequence are very similar to the data reported for the periplasmic, membrane-bound hydrogenase isolated by Yagi and coworkers, suggesting that this hydrogenase belongs to the general class of [NiFe] hydrogenases, despite its low nickel content and apparently anomalous spectral properties.  相似文献   

3.
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
A combined experimental and theoretical study of the catalytic activity of a [NiFeSe] hydrogenase has been performed by H/D exchange mass spectrometry and molecular dynamics simulations. Hydrogenases are enzymes that catalyze the heterolytic cleavage or production of H2. The [NiFeSe] hydrogenases belong to a subgroup of the [NiFe] enzymes in which a selenocysteine is a ligand of the nickel atom in the active site instead of cysteine. The aim of this research is to determine how much the specific catalytic properties of this hydrogenase are influenced by the replacement of a sulfur by selenium in the coordination of the bimetallic active site versus the changes in the protein structure surrounding the active site. The pH dependence of the D2/H+ exchange activity and the high isotope effect observed in the Michaelis constant for the dihydrogen substrate and in the single exchange/double exchange ratio suggest that a “cage effect” due to the protein structure surrounding the active site is modulating the enzymatic catalysis. This “cage effect” is supported by molecular dynamics simulations of the diffusion of H2 and D2 from the outside to the inside of the protein, which show different accumulation of these substrates in a cavity next to the active site.  相似文献   

5.
As in many other hydrogenases, the small subunit of the F420-reducing hydrogenase of Methanococcus voltae contains three iron-sulfur clusters. The arrangement of the three [4Fe-4S] clusters corresponds to the arrangement of [Fe-S] clusters in the [NiFeSe] hydrogenase of Desulfomicrobium baculatum. Many other hydrogenases contain two [4Fe-4S] clusters and one [3Fe-4S] cluster with a relatively high redox potential, which is located in the central position between a proximal and a distal [4Fe-4S] cluster. We have investigated the role of the central [4Fe-4S] cluster in M. voltae with regard to its effect on the enzyme activity and its spectroscopic properties. Using site-directed mutagenesis, we constructed a strain in which one cysteine ligand of the central [4Fe-4S] cluster was replaced by proline. The mutant protein was purified, and the [4Fe-4S] to [3Fe-4S] cluster conversion was confirmed by EPR spectroscopy. The conversion resulted in an increase in the redox potential of the [3Fe-4S] cluster by about 400 mV. The [NiFe] active site was not affected significantly by the mutation as assessed by the unchanged Ni EPR spectrum. The specific activity of the mutated enzyme did not show any significant differences with the artificial electron acceptor benzyl viologen, but its specific activity with the natural electron acceptor F420 decreased tenfold.  相似文献   

6.
The nucleotide sequences encoding the [NiFe] hydrogenase from Desulfovibrio gigas and the [NiFeSe] hydrogenase from Desulfovibrio baculatus (N.K. Menon, H.D. Peck, Jr., J. LeGall, and A.E. Przybyla, J. Bacteriol. 169:5401-5407, 1987; C. Li, H.D. Peck, Jr., J. LeGall, and A.E. Przybyla, DNA 6:539-551, 1987) were analyzed by the codon usage method of Staden and McLachlan. The reported reading frames were found to contain regions of low codon probability which are matched by more probable sequences in other frames. Renewed nucleotide sequencing showed the probable frames to be correct. The corrected sequences of the two small and large subunits share a significant degree of sequence homology. The small subunit, which contains 10 conserved cysteine residues, is likely to coordinate at least 2 iron-sulfur clusters, while the finding of a selenocysteine codon (TGA) near the 3' end of the [NiFeSe] large-subunit gene matched by a regular cysteine codon (TGC) in the [NiFe] large-subunit gene indicates the presence of some of the ligands to the active-site nickel in the large subunit.  相似文献   

7.
Hydrogenases are metalloenzymes that catalyze the reversible reaction \textH2 \leftrightarrows 2\textH + + 2\texte - {\text{H}}_{2} \leftrightarrows 2{\text{H}}^{ + } + 2{\text{e}}^{ - } , being potentially useful in H2 production or oxidation. [NiFeSe] hydrogenases are a particularly interesting subgroup of the [NiFe] class that exhibit tolerance to O2 inhibition and produce more H2 than standard [NiFe] hydrogenases. However, the molecular determinants responsible for these properties remain unknown. Hydrophobic pathways for H2 diffusion have been identified in [NiFe] hydrogenases, as have proton transfer pathways, but they have never been studied in [NiFeSe] hydrogenases. Our aim was, for the first time, to characterize the H2 and proton pathways in a [NiFeSe] hydrogenase and compare them with those in a standard [NiFe] hydrogenase. We performed molecular dynamics simulations of H2 diffusion in the [NiFeSe] hydrogenase from Desulfomicrobium baculatum and extended previous simulations of the [NiFe] hydrogenase from Desulfovibrio gigas (Teixeira et al. in Biophys J 91:2035–2045, 2006). The comparison showed that H2 density near the active site is much higher in [NiFeSe] hydrogenase, which appears to have an alternative route for the access of H2 to the active site. We have also determined a possible proton transfer pathway in the [NiFeSe] hydrogenase from D. baculatum using continuum electrostatics and Monte Carlo simulation and compared it with the proton pathway we found in the [NiFe] hydrogenase from D. gigas (Teixeira et al. in Proteins 70:1010–1022, 2008). The residues constituting both proton transfer pathways are considerably different, although in the same region of the protein. These results support the hypothesis that some of the special properties of [NiFeSe] hydrogenases could be related to differences in the H2 and proton pathways.  相似文献   

8.
The enzymology of the heterodimeric (NiFe) and (NiFeSe) hydrogenases, the monomeric nickel-containing hydrogenases plus the multimeric F420-(NiFe) and NAD(+)-(NiFe) hydrogenases are summarized and discussed in terms of subunit localization of the redox-active nickel and non-heme iron clusters. It is proposed that nickel is ligated solely by amino acid residues of the large subunit and that the non-heme iron clusters are ligated by other cysteine-rich polypeptides encoded in the hydrogenase operons which are not necessarily homologous in either structure or function. Comparison of the hydrogenase operons or putative operons and their hydrogenase genes indicate that the arrangement, number and types of genes in these operons are not conserved among the various types of hydrogenases except for the gene encoding the large subunit. Thus, the presence of the gene for the large subunit is the sole feature common to all known nickel-containing hydrogenases and unites these hydrogenases into a large but diverse gene family. Although the different genes for the large subunits may possess only nominal general derived amino acid homology, all large subunit genes sequenced to date have the sequence R-X-C-X-X-C fully conserved in the amino terminal region of the polypeptide chain and the sequence of D-P-C-X-X-C fully conserved in the carboxyl terminal region. It is proposed that these conserved motifs of amino acids provide the ligands required for the binding of the redox-active nickel. The existing EXAFS (Extended X-ray Absorption Fine Structure) information is summarized and discussed in terms of the numbers and types of ligands to the nickel and the various redox species of nickel defined by EPR spectroscopy. New information concerning the ligands to nickel is presented based on site-directed mutagenesis of the gene encoding the large subunit of the (NiFe) hydrogenase-1 of Escherichia coli. Based on considerations of the biochemical, molecular and biophysical information, ligand environments of the nickel in different redox states of the (NiFe) hydrogenase are proposed.  相似文献   

9.
Hydrogenases, abundant proteins in the microbial world, catalyze cleavage of H2 into protons and electrons or the evolution of H2 by proton reduction. Hydrogen metabolism predominantly occurs in anoxic environments mediated by hydrogenases, which are sensitive to inhibition by oxygen. Those microorganisms, which thrive in oxic habitats, contain hydrogenases that operate in the presence of oxygen. We have selected the H2-sensing regulatory [NiFe] hydrogenase of Ralstonia eutropha H16 to investigate the molecular background of its oxygen tolerance. Evidence is presented that the shape and size of the intramolecular hydrophobic cavities leading to the [NiFe] active site of the regulatory hydrogenase are crucial for oxygen insensitivity. Expansion of the putative gas channel by site-directed mutagenesis yielded mutant derivatives that are sensitive to inhibition by oxygen, presumably because the active site has become accessible for oxygen. The mutant proteins revealed characteristics typical of standard [NiFe] hydrogenases as described for Desulfovibrio gigas and Allochromatium vinosum. The data offer a new strategy how to engineer oxygen-tolerant hydrogenases for biotechnological application.  相似文献   

10.
The distribution of genes for [Fe], [NiFe], and [NiFeSe] hydrogenases was determined for 22 Desulfovibrio species. The genes for [NiFe] hydrogenase were present in all species, whereas those for the [Fe] and [NiFeSe] hydrogenases had a more limited distribution. Sulfate-reducing bacteria from 16S rRNA groups other than the genus Desulfovibrio (R. Devereux, M. Delaney, F. Widdel, and D. A. Stahl, J. Bacteriol. 171:6689-6695, 1989) did not react with the [NiFe] hydrogenase gene probe, which could be used to identify different Desulfovibrio species in oil field samples following growth on lactate-sulfate medium.  相似文献   

11.
The magnetic properties of the nickel(II) site in active Desulfovibrio baculatus (DSM 1743) [NiFeSe] hydrogenase have been measured using the multifield saturation magnetization technique. The periplasmic [NiFeSe] hydrogenase was isolated from bacteria grown in excess selenium in the presence of 57Fe. Saturation magnetization data were collected at three fixed fields (1.375, 2.75, 5.5 tesla) over the temperature range from 2 to 100 K. M?ssbauer and EPR spectroscopies were used to characterize the magnetic state of the two [4Fe-4S] clusters of the enzyme and to quantitate the small amounts of iron impurities present in the sample. The nickel(II) site was found to be diamagnetic (low spin, S = 0). In combination with recent results from extended x-ray absorption fine structure studies, this magnetic state indicates that the nickel(II) site of active D. baculatus [NiFeSe] hydrogenase is five-coordinate.  相似文献   

12.
Desulfovibrio vulgaris Hildenborough is a good model organism to study hydrogen metabolism in sulfate-reducing bacteria. Hydrogen is a key compound for these organisms, since it is one of their major energy sources in natural habitats and also an intermediate in the energy metabolism. The D. vulgaris Hildenborough genome codes for six different hydrogenases, but only three of them, the periplasmic-facing [FeFe], [FeNi]1, and [FeNiSe] hydrogenases, are usually detected. In this work, we studied the synthesis of each of these enzymes in response to different electron donors and acceptors for growth as well as in response to the availability of Ni and Se. The formation of the three hydrogenases was not very strongly affected by the electron donors or acceptors used, but the highest levels were observed after growth with hydrogen as electron donor and lowest with thiosulfate as electron acceptor. The major effect observed was with inclusion of Se in the growth medium, which led to a strong repression of the [FeFe] and [NiFe]1 hydrogenases and a strong increase in the [NiFeSe] hydrogenase that is not detected in the absence of Se. Ni also led to increased formation of the [NiFe]1 hydrogenase, except for growth with H2, where its synthesis is very high even without Ni added to the medium. Growth with H2 results in a strong increase in the soluble forms of the [NiFe]1 and [NiFeSe] hydrogenases. This study is an important contribution to understanding why D. vulgaris Hildenborough has three periplasmic hydrogenases. It supports their similar physiological role in H2 oxidation and reveals that element availability has a strong influence in their relative expression.  相似文献   

13.
The periplasmic hydrogenase containing equivalent amounts of nickel and selenium plus non-heme iron [NiFeSe) hydrogenase) has been purified from cells of the sulfate reducing bacterium Desulfovibrio baculatus (DSM 1748) grown on a lactate/sulfate medium containing natural Se isotopes and the nuclear isotope, 77Se. Both the 77Se-enriched and unenriched hydrogenases were shown to be free of other hydrogenases and characterized with regard to their Se contents. EPR studies of the reduced nickel signal generated by redox titrations of the enriched and unenriched (NiFeSe) hydrogenases demonstrated that the gx = 2.23 and gy = 2.17 resonances are appreciably broadened by the spin of the 77Se nucleus (I = 1/2). This observation demonstrates unambiguously that the unpaired electron is shared by the Ni and Se atoms and that Se serves as a ligand to the nickel redox center of the (NiFeSe) hydrogenase.  相似文献   

14.
The intracellular location of membrane-associated (NiFe) and (NiFeSe) hydrogenases of Desulfovibrio vulgaris was determined using pre-embedding and post-embedding immunoelectron microscopic procedures. Polyclonal antisera directed against the purified (NiFe) and (NiFeSe) hydrogenases were raised in rabbits. One-day-old cultures of D. vulgaris, grown on a lactate/sulfate medium, were used for all experiments in these studies. For post-embedding labeling studies cells were fixed with 0.2% glutaraldehyde and 0.3% formaldehyde, dehydrated with methanol, and embedded in the low-temperature resin Lowicryl K4M. Our post-embedding studies using antibody-gold or protein-A-gold as electron-dense markers revealed the location of the two hydrogenases exclusively at the cell periphery; the precise membrane location was then demonstrated by pre-embedding labeling. Spheroplasts were incubated with the polyclonal antisera against (NiFe) and (NiFeSe) hydrogenase followed by ferritin-linked secondary antibodies prior to embedding and sectioning. The observed labeling pattern unequivocally revealed that the antigenic reactive sites of the (NiFe) hydrogenase are located in the near vicinity of the cytoplasmic membrane facing into the periplasmic space, whereas the (NiFeSe) hydrogenase is associated with the cytoplasmic side of the cytoplasmic membrane.  相似文献   

15.
The large subunit HoxC of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha was purified without its small subunit. Two forms of HoxC were identified. Both forms contained iron but only substoichiometric amounts of nickel. One form was a homodimer of HoxC whereas the second also contained the Ni-Fe site maturation proteins HypC and HypB. Despite the presence of the Ni-Fe active site in some of the proteins, both forms, which lack the Fe-S clusters normally present in hydrogenases, cannot activate hydrogen. The incomplete insertion of nickel into the Ni-Fe site provides direct evidence that Fe precedes Ni in the course of metal center assembly.  相似文献   

16.
Desulfovibrio gigas hydrogenase (EC 1.12.2.1) is a complex enzyme containing one nickel, one 3Fe, and two [Fe4S4] clusters (Teixeira, M., Moura, I., Xavier, A. V., Der Vartanian, D. V., LeGall, J., Peck, H. D., Jr., Huynh, B. H., and Moura, J. J. G. (1983) Eur. J. Biochem. 130, 481-484). This hydrogenase belongs to a class of enzymes that are inactive "as isolated" (the so-called "oxygen-stable hydrogenases") and must go through an activation process in order to express full activity. The state of characterization of the active centers of the enzyme as isolated prompted us to do a detailed analysis of the redox patterns, activation profile, and catalytic redox cycle of the enzyme in the presence of either the natural substrate (H2) or chemical reductants. The effect of natural cofactors, as cytochrome C3, was also studied. Special focus was given to the intermediate redox species generated during the catalytic cycle of the enzyme and to the midpoint redox potentials associated. The available information is discussed in terms of a "working hypothesis" for the mechanism of the [NiFe] hydrogenases from sulfate reducing organisms in the context of activation process and catalytic cycle.  相似文献   

17.
Pinske C  Sawers RG 《PloS one》2012,7(2):e31755
During anaerobic growth Escherichia coli synthesizes two membrane-associated hydrogen-oxidizing [NiFe]-hydrogenases, termed hydrogenase 1 and hydrogenase 2. Each enzyme comprises a catalytic subunit containing the [NiFe] cofactor, an electron-transferring small subunit with a particular complement of [Fe-S] (iron-sulfur) clusters and a membrane-anchor subunit. How the [Fe-S] clusters are delivered to the small subunit of these enzymes is unclear. A-type carrier (ATC) proteins of the Isc (iron-sulfur-cluster) and Suf (sulfur mobilization) [Fe-S] cluster biogenesis pathways are proposed to traffic pre-formed [Fe-S] clusters to apoprotein targets. Mutants that could not synthesize SufA had active hydrogenase 1 and hydrogenase 2 enzymes, thus demonstrating that the Suf machinery is not required for hydrogenase maturation. In contrast, mutants devoid of the IscA, ErpA or IscU proteins of the Isc machinery had no detectable hydrogenase 1 or 2 activities. Lack of activity of both enzymes correlated with the absence of the respective [Fe-S]-cluster-containing small subunit, which was apparently rapidly degraded. During biosynthesis the hydrogenase large subunits receive their [NiFe] cofactor from the Hyp maturation machinery. Subsequent to cofactor insertion a specific C-terminal processing step occurs before association of the large subunit with the small subunit. This processing step is independent of small subunit maturation. Using western blotting experiments it could be shown that although the amount of each hydrogenase large subunit was strongly reduced in the iscA and erpA mutants, some maturation of the large subunit still occurred. Moreover, in contrast to the situation in Isc-proficient strains, these processed large subunits were not membrane-associated. Taken together, our findings demonstrate that both IscA and ErpA are required for [Fe-S] cluster delivery to the small subunits of the hydrogen-oxidizing hydrogenases; however, delivery of the Fe atom to the active site might have different requirements.  相似文献   

18.
A highly conserved histidine-rich region with unknown function was recognized in the large subunit of [NiFe] hydrogenases. The HxHxxHxxHxH sequence occurs in most membrane-bound hydrogenases, but only two of these histidines are present in the cytoplasmic ones. Site-directed mutagenesis of the His-rich region of the T. roseopersicina membrane-attached Hyn hydrogenase disclosed that the enzyme activity was significantly affected only by the replacement of the His104 residue. Computational analysis of the hydrogen bond network in the large subunits indicated that the second histidine of this motif might be a component of a proton transfer pathway including Arg487, Asp103, His104 and Glu436. Substitutions of the conserved amino acids of the presumed transfer route impaired the activity of the Hyn hydrogenase. Western hybridization was applied to demonstrate that the cellular level of the mutant hydrogenases was similar to that of the wild type. Mostly based on theoretical modeling, few proton transfer pathways have already been suggested for [NiFe] hydrogenases. Our results propose an alternative route for proton transfer between the [NiFe] active center and the surface of the protein. A novel feature of this model is that this proton pathway is located on the opposite side of the large subunit relative to the position of the small subunit. This is the first study presenting a systematic analysis of an in silico predicted proton translocation pathway in [NiFe] hydrogenases by site-directed mutagenesis.  相似文献   

19.
The genome of Desulfovibrio vulgaris Hildenborough (DvH) encodes for six hydrogenases (Hases), making it an interesting organism to study the role of these proteins in sulphate respiration. In this work we address the role of the [NiFeSe] Hase, found to be the major Hase associated with the cytoplasmic membrane. The purified enzyme displays interesting catalytic properties, such as a very high H2 production activity, which is dependent on the presence of phospholipids or detergent, and resistance to oxygen inactivation since it is isolated aerobically in a Ni(II) oxidation state. Evidence was obtained that the [NiFeSe] Hase is post-translationally modified to include a hydrophobic group bound to the N-terminal, which is responsible for its membrane association. Cleavage of this group originates a soluble, less active form of the enzyme. Sequence analysis shows that [NiFeSe] Hases from Desulfovibrionacae form a separate family from the [NiFe] enzymes of these organisms, and are more closely related to [NiFe] Hases from more distant bacterial species that have a medial [4Fe4S]2+/1+ cluster, but not a selenocysteine. The interaction of the [NiFeSe] Hase with periplasmic cytochromes was investigated and is similar to the [NiFe]1 Hase, with the Type I cytochrome c 3 as the preferred electron acceptor. A model of the DvH [NiFeSe] Hase was generated based on the structure of the Desulfomicrobium baculatum enzyme. The structures of the two [NiFeSe] Hases are compared with the structures of [NiFe] Hases, to evaluate the consensual structural differences between the two families. Several conserved residues close to the redox centres were identified, which may be relevant to the higher activity displayed by [NiFeSe] Hases. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
The maturation of [NiFe] hydrogenases includes formation of the nickel metallocenter, proteolytic processing of the metal center carrying large subunit, and its assembling with other hydrogenase subunits. The hydrogenase maturating enzyme HYBD from Escherichia coli, a protease of molecular mass 17.5 kDa, specifically cleaves off a 15 amino acid peptide from the C terminus of the precursor of the large subunit of hydrogenase 2 in a nickel-dependent manner. Here we report the crystal structure of HYBD at 2.2 A resolution. It consists of a twisted five-stranded beta-sheet surrounded by four and three helices, respectively, on each side. A cadmium ion from the crystallization buffer binds to the proposed nickel-binding site and is penta-coordinated by Glu16, Asp62, His93, and a water molecule in a pseudo-tetragonal arrangement. HYBD is topologically related to members of the metzincins superfamily of zinc endoproteinases, sharing the central beta-sheet and three helices. In contrast to the metzincins, the metal-binding site of HYBD is localized at the C-terminal end of the beta-sheet. Three helical insertions unique to HYBD pack against one side of the sheet, build up the active site cleft, and provide His93 as ligand to the metal. From this structure, we derive molecular clues into how the protease HYBD is involved in the hydrogenase maturation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号