首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The genetic locus encoding the periplasmic [NiFe]hydrogenase (Hyd) from Desulfovibrio fructosovorans was cloned and sequenced. The genes of this two-subunit enzyme have an operon organization in which the 0.94-kb gene encoding the small subunit precedes the 1.69-kb gene encoding the large subunit. A Shine-Dalgarno sequence is centered at -9 bp from the ATG of both subunits. The possible presence of another open reading frame downstream from the large-subunit-encoding gene is considered. The N-terminal sequence of the large 61-kDa subunit deduced from the nucleotide sequence is in perfect agreement with the results of the amino acid (aa) sequence determined by Edman degradation. A 50-aa leader peptide precedes the small 28-kDa subunit. The aa sequence of the enzyme shows nearly 65% homology with the [NiFe]Hyd aa sequence of Desulfovibrio gigas. Comparisons with a large range of Hyds from various bacterial species indicate the presence of highly conserved Cys residues, the implications of which are discussed from the point of view of nickel atom and cluster accommodation.  相似文献   

3.
An iron-only hydrogenase was partially purified and characterized from Desulfovibrio fructosovorans wild-type strain. The enzyme exhibits a molecular mass of 56 kDa and is composed of two distinct subunits HydA and HydB (46 and 13 kDa, respectively). The N-terminal amino acid sequences of the two subunits of the enzyme were determined with the aim of designing degenerate oligonucleotides. Direct and inverse polymerase chain reaction techniques were used to clone the hydrogenase encoding genes. A 9-nucleotide region located 75 bp upstream from the translational start codon of the D. fructosovorans hydA gene was found to be highly conserved. The analysis of the deduced amino acid sequence of these genes showed the presence of a signal sequence located in the small subunit, exhibiting the consensus sequence which is likely to be involved in the specific export mechanism of hydrogenases. Two ferredoxin-like motives involved in the coordination of [4Fe-4S] clusters were identified in the N-terminal domain of the large subunit. The amino acid sequence of the [Fe] hydrogenase from D. fructosovorans was compared with the amino acid sequences from eight other hydrogenases (cytoplasmic and periplasmic). These enzymes share an overall 18% identity and 28% similarity. The identity reached 73% and 69% when the D. fructosovorans hydrogenase sequence was compared with the hydrogenase sequences from Desulfovibrio vulgaris Hildenborough and Desulfovibrio vulgaris oxamicus Monticello, respectively.  相似文献   

4.
The enzymology of the heterodimeric (NiFe) and (NiFeSe) hydrogenases, the monomeric nickel-containing hydrogenases plus the multimeric F420-(NiFe) and NAD(+)-(NiFe) hydrogenases are summarized and discussed in terms of subunit localization of the redox-active nickel and non-heme iron clusters. It is proposed that nickel is ligated solely by amino acid residues of the large subunit and that the non-heme iron clusters are ligated by other cysteine-rich polypeptides encoded in the hydrogenase operons which are not necessarily homologous in either structure or function. Comparison of the hydrogenase operons or putative operons and their hydrogenase genes indicate that the arrangement, number and types of genes in these operons are not conserved among the various types of hydrogenases except for the gene encoding the large subunit. Thus, the presence of the gene for the large subunit is the sole feature common to all known nickel-containing hydrogenases and unites these hydrogenases into a large but diverse gene family. Although the different genes for the large subunits may possess only nominal general derived amino acid homology, all large subunit genes sequenced to date have the sequence R-X-C-X-X-C fully conserved in the amino terminal region of the polypeptide chain and the sequence of D-P-C-X-X-C fully conserved in the carboxyl terminal region. It is proposed that these conserved motifs of amino acids provide the ligands required for the binding of the redox-active nickel. The existing EXAFS (Extended X-ray Absorption Fine Structure) information is summarized and discussed in terms of the numbers and types of ligands to the nickel and the various redox species of nickel defined by EPR spectroscopy. New information concerning the ligands to nickel is presented based on site-directed mutagenesis of the gene encoding the large subunit of the (NiFe) hydrogenase-1 of Escherichia coli. Based on considerations of the biochemical, molecular and biophysical information, ligand environments of the nickel in different redox states of the (NiFe) hydrogenase are proposed.  相似文献   

5.
Periplasmic hydrogenase [hydrogen:ferricytochrome c3 oxidoreductase, EC 1.12.2.1] from Desulfovibrio vulgaris Miyazaki K (MK) was purified to homogeneity. Its chemical and immunological properties were examined and compared with those of other Desulfovibrio hydrogenases. The pure enzyme showed a specific activity of 1,000 mumol H2 evolution min-1 (mg protein)-1. The enzyme had a molecular weight of 50,000 as estimated by gel filtration and consisted of a single polypeptide chain. The absorption spectrum of the enzyme was characteristic of an iron-sulfur protein and the extinction coefficients at 400 and 280 nm were 34 and 104 mM-1. cm-1, respectively. It contained 9.4 mol iron and 6.9 mol of acid-labile sulfide per mol. The amino acid composition of the preparation was very similar to the value reported for D. desulfuricans NRC 49001 hydrogenase. Rabbit antisera were prepared against the enzyme of D. vulgaris MK. Ouchterlony double diffusion and immunotitration tests of crude extracts from several strains of Desulfovibrio revealed that the enzyme from MK cells was immunologically identical with those from D. vulgaris Hildenborough and D. desulfuricans NRC 49001, but different from those from D. vulgaris Miyazaki F (MF) and Miyazaki Y, and D. desulfuricans Essex 6 strains. It is concluded that among Desulfovibrio hydrogenases, those from D. vulgaris MK, D. vulgaris Hildenborough and D. desulfuricans NRC 49001 form one group in terms of both subunit structure and antigenicity.  相似文献   

6.
BACKGROUND: [NiFeSe] hydrogenases are metalloenzymes that catalyze the reaction H2<-->2H+ + 2e-. They are generally heterodimeric, contain three iron-sulfur clusters in their small subunit and a nickel-iron-containing active site in their large subunit that includes a selenocysteine (SeCys) ligand. RESULTS: We report here the X-ray structure at 2.15 A resolution of the periplasmic [NiFeSe] hydrogenase from Desulfomicrobium baculatum in its reduced, active form. A comparison of active sites of the oxidized, as-prepared, Desulfovibrio gigas and the reduced D. baculatum hydrogenases shows that in the reduced enzyme the nickel-iron distance is 0.4 A shorter than in the oxidized enzyme. In addition, the putative oxo ligand, detected in the as-prepared D. gigas enzyme, is absent from the D. baculatum hydrogenase. We also observe higher-than-average temperature factors for both the active site nickel-selenocysteine ligand and the neighboring Glu18 residue, suggesting that both these moieties are involved in proton transfer between the active site and the molecular surface. Other differences between [NiFeSe] and [NiFe] hydrogenases are the presence of a third [4Fe4S] cluster replacing the [3Fe4S] cluster found in the D. gigas enzyme, and a putative iron center that substitutes the magnesium ion that has already been described at the C terminus of the large subunit of two [NiFe] hydrogenases. CONCLUSIONS: The heterolytic cleavage of molecular hydrogen seems to be mediated by the nickel center and the selenocysteine residue. Beside modifying the catalytic properties of the enzyme, the selenium ligand might protect the nickel atom from oxidation. We conclude that the putative oxo ligand is a signature of inactive 'unready' [NiFe] hydrogenases.  相似文献   

7.
The genes coding for the large and small subunits of the periplasmic hydrogenase from Desulfovibrio baculatus have been cloned and sequenced. The genes are arranged in an operon with the small subunit gene preceding the large subunit gene. The small subunit gene codes for a 32 amino acid leader sequence supporting the periplasmic localization of the protein, however no ferredoxin-like or other characteristic iron-sulfur coordination sites were observed. The periplasmic hydrogenases from D. baculatus (an NiFeSe protein) and D. vulgaris (an Fe protein) exhibit no homology suggesting that they are structurally different, unrelated entities.  相似文献   

8.
BACKGROUND: The active site of [NiFe] hydrogenase, a heterodimeric protein, is suggested to be a binuclear Ni-Fe complex having three diatomic ligands to the Fe atom and three bridging ligands between the Fe and Ni atoms in the oxidized form of the enzyme. Two of the bridging ligands are thiolate sidechains of cysteinyl residues of the large subunit, but the third bridging ligand was assigned as a non-protein monatomic sulfur species in Desulfovibrio vulgaris Miyazaki F hydrogenase. RESULTS: The X-ray crystal structure of the reduced form of D. vulgaris Miyazaki F [NiFe] hydrogenase has been solved at 1.4 A resolution and refined to a crystallographic R factor of 21.8%. The overall structure is very similar to that of the oxidized form, with the exception that the third monatomic bridge observed at the Ni-Fe site in the oxidized enzyme is absent, leaving this site unoccupied in the reduced form. CONCLUSIONS: The unusual ligand structure found in the oxidized form of D. vulgaris Miyazaki F [NiFe] hydrogenase was confirmed in the reduced form of the enzyme, with the exception that the electron density assigned to the monatomic sulfur bridge had almost disappeared. On the basis of this finding, as well as the observation that H2S is liberated from the oxidized enzyme under an atmosphere of H2 in the presence of its electron carrier, it was postulated that the monatomic sulfur bridge must be removed for the enzyme to be activated. A possible mechanism for the catalytic action of the hydrogenase is proposed.  相似文献   

9.
The nucleotide sequences encoding the [NiFe] hydrogenase from Desulfovibrio gigas and the [NiFeSe] hydrogenase from Desulfovibrio baculatus (N.K. Menon, H.D. Peck, Jr., J. LeGall, and A.E. Przybyla, J. Bacteriol. 169:5401-5407, 1987; C. Li, H.D. Peck, Jr., J. LeGall, and A.E. Przybyla, DNA 6:539-551, 1987) were analyzed by the codon usage method of Staden and McLachlan. The reported reading frames were found to contain regions of low codon probability which are matched by more probable sequences in other frames. Renewed nucleotide sequencing showed the probable frames to be correct. The corrected sequences of the two small and large subunits share a significant degree of sequence homology. The small subunit, which contains 10 conserved cysteine residues, is likely to coordinate at least 2 iron-sulfur clusters, while the finding of a selenocysteine codon (TGA) near the 3' end of the [NiFeSe] large-subunit gene matched by a regular cysteine codon (TGC) in the [NiFe] large-subunit gene indicates the presence of some of the ligands to the active-site nickel in the large subunit.  相似文献   

10.
11.
hydA and hydB, the genes encoding the large (46-kDa) and small (13. 5-kDa) subunits of the periplasmic [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757, have been cloned and sequenced. The deduced amino acid sequence of the genes product showed complete identity to the sequence of the well-characterized [Fe] hydrogenase from the closely related species Desulfovibrio vulgaris Hildenborough (G. Voordouw and S. Brenner, Eur. J. Biochem. 148:515-520, 1985). The data show that in addition to the well-known signal peptide preceding the NH2 terminus of the mature small subunit, the large subunit undergoes a carboxy-terminal processing involving the cleavage of a peptide of 24 residues, in agreement with the recently reported data on the three-dimensional structure of the enzyme (Y. Nicolet, C. Piras, P. Legrand, E. C. Hatchikian, and J. C. Fontecilla-Camps, Structure 7:13-23, 1999). We suggest that this C-terminal processing is involved in the export of the protein to the periplasm.  相似文献   

12.
The gene encoding a protein containing a putative [6Fe-6S] prismane cluster has been cloned from Desulfovibrio vulgaris (Hildenborough) and sequenced. The gene encodes a polypeptide composed of 553 amino acids (60,161 Da). The DNA-derived amino acid sequence was partly confirmed by N-terminal sequencing of the purified protein and of fragments of the protein generated by CNBr cleavage. Furthermore, the C-terminal sequence was verified by digestion with carboxypeptidases A and B. The polypeptide contains nine Cys residues. Four of these residues are gathered in a Cys-Xaa2-Cys-Xaa7-Cys-Xaa5-Cys motif located towards the N-terminus of the protein. No relevant sequence similarity was found with other proteins, including those with high-spin Fe-S clusters (nitrogenase, hydrogenase), with one significant exception: the stretch containing the first four Cys residues spans two submotifs, Cys-Xaa2-Cys and Lys-Gly-Xaa-Cys-Gly, separated by 11 residues, that are also present in high-spin Fe-S cluster containing CO dehydrogenase. Western-blot analysis demonstrates cross-reactivity of antibodies raised against the purified protein both in Desulfovibrio strains and other sulfate-reducing bacteria. Hybridization of the cloned gene with genomic DNA of several other Desulfovibrio species indicates that homologous sequences are generally present in the genus Desulfovibrio.  相似文献   

13.
 A comparative study of electron transfer between the 16 heme high molecular mass cytochrome (Hmc) from Desulfovibrio vulgaris Hildenborough and the [Fe] and [NiFe] hydrogenases from the same organism was carried out, both in the presence and in the absence of catalytic amounts of cytochrome c 3. For comparison, this study was repeated with the [NiFe] hydrogenase from D. gigas. Hmc is very slowly reduced by the [Fe] hydrogenase, but faster by either of the two [NiFe] hydrogenases. In the presence of cytochrome c 3, in equimolar amounts to the hydrogenases, the rates of electron transfer are significantly increased and are similar for the three hydrogenases. The results obtained indicate that the reduction of Hmc by the [Fe] or [NiFe] hydrogenases is most likely mediated by cytochrome c 3. A similar study with D. vulgaris Hildenborough cytochrome c 553 shows that, in contrast, this cytochrome is reduced faster by the [Fe] hydrogenase than by the [NiFe] hydrogenases. However, although catalytic amounts of cytochrome c 3 have no effect in the reduction by the [Fe] hydrogenase, it significantly increases the rate of reduction by the [NiFe] hydrogenases. Received: 14 April 1998 / Accepted: 25 June 1998  相似文献   

14.
15.
A 3.3-kilobase-pair region of the Methanothermus fervidus genome encoding part of the small subunit and all of the large subunit of the methyl viologen-reducing hydrogenase and a polyferredoxin was cloned and sequenced. The sequence of this hyperthermophilic hydrogenase conforms to the consensus sequence established for procaryotic [NiFe] hydrogenases. Although the M. fervidus polyferredoxin is the same size as the Methanobacterium thermoautotrophicum ferredoxin, containing six tandemly arranged bacterial ferredoxinlike domains, these two proteins are predicted to be only 64% identical in their primary sequences.  相似文献   

16.
The nucleotide sequence of the 4.7-kb SalI/EcoRI insert of plasmid pHV 15 containing the hydrogenase gene from Desulfovibrio vulgaris (Hildenborough) has been determined with the dideoxy chain-termination method. The structural gene for hydrogenase encodes a protein product of molecular mass 45820 Da. The NH2-terminal sequence of the enzyme deduced from the nucleic acid sequence corresponds exactly to the amino acid sequence determined by Edman degradation. The nucleic acid sequence indicates that a N-formylmethionine residue precedes the NH2-terminal amino acid Ser-1. There is no evidence for a leader sequence. The NH2-terminal part of the hydrogenase shows homology to the bacterial [8Fe-8S] ferredoxins. The sequence Cys-Ile-Xaa-Cys-Xaa-Xaa-Cys-Xaa-Xaa-Xaa-Cys-Pro-Xaa-Xaa-Ala-(Ile) occurs twice both in the hydrogenase and in [8Fe-8S] ferredoxins, where the Cys residues have been shown to coordinate two [4Fe-4S] clusters [Adman, E. T., Sieker, L. C. and Jensen, L. H. (1973) J. Biol. Chem. 248, 3987-3996]. These results, therefore, suggest that two electron-transferring ferredoxin-like [4Fe-4S] clusters are located in the NH2-terminal segment of the hydrogenase molecule. There are ten more Cys residues but it is not clear which four of these could participate in the formation of the third cluster, which is thought to be the hydrogen binding centre. Another gene, encoding a protein of molecular mass 13493 Da, was found immediately downstream from the gene for the 46-kDa hydrogenase. The nucleic acid sequence suggests that the hydrogenase and the 13.5-kDa protein belong to a single operon and are coordinately expressed. Since dodecylsulfate gel electrophoresis of purified hydrogenase indicates the presence of a 13.5-kDa polypeptide in addition to the 46-kDa component, it is proposed that the hydrogenase from D. vulgaris (Hildenborough) is a two-subunit enzyme.  相似文献   

17.
Magnetization and magnetic susceptibility measurements revealed that the hydrogenase [EC 1.12.2.1] from Desulfovibrio vulgaris Miyazaki F has an independent unpaired electron in its iron-sulfur cluster. The paramagnetic center of the Desulfovibrio hydrogenase is, therefore, different from that in the Chromatium hydrogenase which interacts with another paramagnetic center, probably nickel.  相似文献   

18.
Identification of three classes of hydrogenase in the genus, Desulfovibrio   总被引:5,自引:0,他引:5  
A comparison of amino-terminal amino acid sequences from the large and small subunits of hydrogenases from Desulfovibrio reveals significant differences. These results, in conjunction with antibody analyses, clearly indicate that the iron, iron + nickel, and iron + nickel + selenium containing hydrogenases represent three distinct classes of hydrogenase in Desulfovibrio.  相似文献   

19.
A highly conserved histidine-rich region with unknown function was recognized in the large subunit of [NiFe] hydrogenases. The HxHxxHxxHxH sequence occurs in most membrane-bound hydrogenases, but only two of these histidines are present in the cytoplasmic ones. Site-directed mutagenesis of the His-rich region of the T. roseopersicina membrane-attached Hyn hydrogenase disclosed that the enzyme activity was significantly affected only by the replacement of the His104 residue. Computational analysis of the hydrogen bond network in the large subunits indicated that the second histidine of this motif might be a component of a proton transfer pathway including Arg487, Asp103, His104 and Glu436. Substitutions of the conserved amino acids of the presumed transfer route impaired the activity of the Hyn hydrogenase. Western hybridization was applied to demonstrate that the cellular level of the mutant hydrogenases was similar to that of the wild type. Mostly based on theoretical modeling, few proton transfer pathways have already been suggested for [NiFe] hydrogenases. Our results propose an alternative route for proton transfer between the [NiFe] active center and the surface of the protein. A novel feature of this model is that this proton pathway is located on the opposite side of the large subunit relative to the position of the small subunit. This is the first study presenting a systematic analysis of an in silico predicted proton translocation pathway in [NiFe] hydrogenases by site-directed mutagenesis.  相似文献   

20.
The genes encoding the periplasmic [Fe] hydrogenase from Desulfovibrio vulgaris subsp. oxamicus Monticello were cloned by exploiting their homology with the hydAB genes from D. vulgaris subsp. vulgaris Hildenborough, in which this enzyme is present as a heterologous dimer of alpha and beta subunits. Nucleotide sequencing showed that the enzyme is encoded by an operon in which the gene for the 46-kilodalton (kDa) alpha subunit precedes that of the 13.5-kDa beta subunit, exactly as in the Hildenborough strain. The pairs of hydA and hydB genes are highly homologous; both alpha subunits (420 amino acid residues) share 79% sequence identity, while the unprocessed beta subunits (124 and 123 amino acid residues, respectively) share 71% sequence identity. In contrast, there appears to be no sequence homology outside these coding regions, with the exception of a possible promoter element, which was found approximately 90 base pairs upstream from the translational start of the hydA gene. The recently discovered hydC gene, which may code for a 65.8-kDa fusion protein (gamma) of the alpha and beta subunits and is present immediately downstream from the hydAB genes in the Hildenborough strain, was found to be absent from the Monticello strain. The implication of this result for the possible function of the hydC gene product in Desulfovibrio species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号