首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence.Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities “inhabiting” a plant.Conclusions Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant’s resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.  相似文献   

2.
Chemostats are continuous culture systems in which cells are grown in a tightly controlled, chemically constant environment where culture density is constrained by limiting specific nutrients.1,2 Data from chemostats are highly reproducible for the measurement of quantitative phenotypes as they provide a constant growth rate and environment at steady state. For these reasons, chemostats have become useful tools for fine-scale characterization of physiology through analysis of gene expression3-6 and other characteristics of cultures at steady-state equilibrium.7 Long-term experiments in chemostats can highlight specific trajectories that microbial populations adopt during adaptive evolution in a controlled environment. In fact, chemostats have been used for experimental evolution since their invention.8 A common result in evolution experiments is for each biological replicate to acquire a unique repertoire of mutations.9-13 This diversity suggests that there is much left to be discovered by performing evolution experiments with far greater throughput. We present here the design and operation of a relatively simple, low cost array of miniature chemostats—or ministats—and validate their use in determination of physiology and in evolution experiments with yeast. This approach entails growth of tens of chemostats run off a single multiplexed peristaltic pump. The cultures are maintained at a 20 ml working volume, which is practical for a variety of applications. It is our hope that increasing throughput, decreasing expense, and providing detailed building and operation instructions may also motivate research and industrial application of this design as a general platform for functionally characterizing large numbers of strains, species, and growth parameters, as well as genetic or drug libraries.  相似文献   

3.
Experiments to determine the effects of extraction techniques and the influence of shipping on extraction of Heterodera glycines life stages gave variable results. Shipping did not significantly affect numbers of nematodes extracted. More second-stage juveniles (J2) were extracted with Baermann funnels than with an elutriator, probably because incubation of encysted eggs on the Baermann funnel for 1 week allowed hatching to occur. Sieving was more efficient than elutriation for extracting cysts. Adding air agitation to the water pressure during elutriation increased extraction efficiency of cysts but not J2. Sample sizes of 250 cm³ and 500 cm³ did not influence extraction efficiency of cysts; however, sample size did influence extraction of J2.  相似文献   

4.
董玮  武文君  张徐波 《昆虫学报》2022,65(8):1068-1074
平衡棒(haltere)是双翅目昆虫后翅特化而成的结构,可在飞行中起重要作用。平衡棒基部的感受器可以检测到飞行中的惯性力,向运动神经元提供反馈,迅速地平衡身体并纠正航向。昆虫的平衡棒由成虫盘发育形成,其特化受HOX基因(Ultrabithorax, Ubx)调控。发育成熟的平衡棒由两层上皮细胞组成,末端球状结构内部充满高度空泡化的细胞,基部具有大量感器。平衡棒的运动由独立的肌肉控制,相对于同侧的翅反向移动,翅与平衡棒的协同运动对于昆虫起飞和维持平衡十分重要。近年来,平衡棒的导航原理越来越多地应用于仿生学研究中,基于果蝇平衡棒的结构和功能,研制出多种飞行器的导航设备。本文结合近年来相关领域的研究成果,就平衡棒的发育、形态结构、功能和仿生应用等方面的研究进展进行综述,为深入理解昆虫平衡棒的发育机制和生物学功能提供参考。  相似文献   

5.
The cellular factors involved in mRNA degradation and translation repression can aggregate into cytoplasmic domains known as GW bodies or mRNA processing bodies (P-bodies). However, current understanding of P-bodies, especially the regulatory aspect, remains relatively fragmentary. To provide a framework for studying the mechanisms and regulation of P-body formation, maintenance, and disassembly, we compiled a list of P-body proteins found in various species and further grouped both reported and predicted human P-body proteins according to their functions. By analyzing protein-protein interactions of human P-body components, we found that many P-body proteins form complex interaction networks with each other and with other cellular proteins that are not recognized as P-body components. The observation suggests that these other cellular proteins may play important roles in regulating P-body dynamics and functions. We further used siRNA-mediated gene knockdown and immunofluorescence microscopy to demonstrate the validity of our in silico analyses. Our combined approach identifies new P-body components and suggests that protein ubiquitination and protein phosphorylation involving 14-3-3 proteins may play critical roles for post-translational modifications of P-body components in regulating P-body dynamics. Our analyses provide not only a global view of human P-body components and their physical interactions but also a wealth of hypotheses to help guide future research on the regulation and function of human P-bodies.  相似文献   

6.
7.

Background and Aims

Versatility in the reproductive development of pseudoviviparous grasses in response to growth conditions is an intriguing reproduction strategy. To better understand this strategy, this study examined variation in flowering and pseudovivipary among populations, co-occurring clones within populations, and among tillers in individual clones of Poa bulbosa, a summer-dormant geophytic grass that reproduces sexually by seed, and asexually by basal tiller bulbs and bulbils formed in proliferated panicles.

Methods

Clones were collected from 17 populations across a rainfall gradient. Patterns of reproduction were monitored for 11 years in a common garden experiment and related to interannual differences in climatic conditions. Intraclonal variation in flowering and pseudovivipary was studied in a phytotron, under daylengths marginal for flowering induction.

Key Results

Clones showed large temporal variability in their reproductive behaviour. They flowered in some years but not in others, produced normal or proliferated panicles in different years, or became dormant without flowering. Proliferating clones did not show a distinct time sequence of flowering and proliferation across years. Populations differed in incidence of flowering and proliferation. The proportion of flowering clones increased with decreasing rainfall at the site of population origin, but no consistent relationship was found between flowering and precipitation in the common garden experiment across years. In contrast, flowering decreased at higher temperatures during early growth stages after bulb sprouting. Pulses of soil fertilization greatly increased the proportion of flowering clones and panicle production. High intraclonal tiller heterogeneity was observed, as shown by the divergent developmental fates of daughter plants arising from bulbs from the same parent clone and grown under similar conditions. Panicle proliferation was enhanced by non-inductive 8 h short days, while marginally inductive 12 h days promoted normal panicles.

Conclusions

Interannual variation in flowering and proliferation in P. bulbosa clones was attributed to differences in the onset of the rainy season, resulting in different daylength and temperature conditions during the early stages of growth, during which induction of flowering and dormancy occurs.  相似文献   

8.
目的:研究红花水提取液对系统性硬皮病(SSc)模型小鼠的防治作用及相关机制研究。方法:60只 BALB /C小鼠随机分为对照组、模型组、强的松组、红花低、中、高剂量组,每组10只。对照组背部注射生理盐水,其余5组均背部皮下注射100 μl浓度为 200 μg /ml的注射用盐酸博来霉素,每天1次,连续注射28 d,制备SSc模型;造模同时对照组和模型组给予生理盐水10 ml/kg灌胃,强的松组给予强的松溶液4.5 mg/kg (10 ml/kg)灌胃,红花低、中、高剂量组分别给予红花1.5、3、6 g/kg (10 ml/kg)灌胃,各组均连续灌胃28 d。给药28 d后,取各组小鼠背部注射博来霉素区皮肤组织切片测量真皮厚度,采用水解法检测皮肤组织羟脯氨酸(HYP)含量;采用ELISA法检测皮肤组织结缔组织生长因子(CTGF)、转化生长因子-β(TGF-β)含量及血清白细胞介素-6(IL-6)、白细胞介素-17(IL-17)水平。结果:与对照组比较,模型组皮肤真皮厚度,皮肤组织CTGF、TGF-β、HYP含量及血清 IL-6、IL-17 水平明显升高(P<0.05);与模型组比较,强的松组、红花低、中、高剂量组皮肤真皮厚度,皮肤组织 CTGF、TGF-β、HYP含量及血清 IL-6、IL-17水平明显降低(P<0.05)。结论:红花水提取液可改善SSc小鼠皮肤状况(或真皮厚度),其作用机制可能与减轻免疫炎症反应有关。  相似文献   

9.

Background

Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit.

Scope

This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions.

Conclusions

Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future.  相似文献   

10.
S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5’-ATCGAT-3’ sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.  相似文献   

11.
Background and Aims Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated.Scope and Results Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate–glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits.Conclusions Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of expanding their shelf-life after harvest and in maintaining their nutritional value.  相似文献   

12.
 Floral structure and development of representatives of Asteliaceae, Blandfordiaceae, Boryaceae, Doryanthaceae, and Hypoxidaceae, all members of the `lower' Asparagales, were studied comparatively. The results are discussed in the light of new molecular systematic studies, but also with regard to established morphological characters in related groups. Stamen shape varies considerably within and between taxa: the shape of anthers is from X-shaped, sagittate to non-sagittate, they are either latrorse or introrse, basifixed, centrifixed or dorsifixed. Gynoecia are syncarpous up to the stigmatic region in all taxa. Ovaries of Doryanthaceae and Hypoxidaceae are inferior, but they are superior in Asteliaceae, Blandfordiaceae and Boryaceae. All ovaries have at least a short synascidiate zone. With the exception of Astelia alpina (Asteliaceae), the ovaries are trilocular. Ovaries of Asteliaceae contain mucilage, which is secreted from trichomes on the funicle and on the placenta. Although flowers are polysymmetric at anthesis, they are monosymmetric in earliest stages with a developmental gradient from adaxial to abaxial. Perianth organs arise individually from either a concave (taxa with inferior ovary) or convex (taxa with superior ovary) apex. Hypoxidaceae have pollen flowers with free stamens. One species, Curculigo capitulata, has Solanum-type flowers with postgenitally united stamens. It is most probably pollinated by buzzing bees. All other taxa have nectariferous flowers with internal or external septal nectaries. Received February 5, 2001 Accepted June 20, 2001  相似文献   

13.
Confocal laser scanning microscopy (CLSM) is a powerful tool for investigation of biofilms. Very few investigations have successfully quantified concurrent distribution of more than two components within biofilms because: 1) selection of fluorescent dyes having minimal spectral overlap is complicated, and 2) quantification of multiple fluorochromes poses a multifactorial problem. Objectives: Report a methodology to quantify and compare concurrent 3-dimensional distributions of three cellular/extracellular components of biofilms grown on relevant substrates. Methods: The method consists of distinct, interconnected steps involving biofilm growth, staining, CLSM imaging, biofilm structural analysis and visualization, and statistical analysis of structural parameters. Biofilms of Streptococcus mutans (strain UA159) were grown for 48 hr on sterile specimens of Point 4 and TPH3 resin composites. Specimens were subsequently immersed for 60 sec in either Biotène PBF (BIO) or Listerine Total Care (LTO) mouthwashes, or water (control group; n=5/group). Biofilms were stained with fluorochromes for extracellular polymeric substances, proteins and nucleic acids before imaging with CLSM. Biofilm structural parameters calculated using ISA3D image analysis software were biovolume and mean biofilm thickness. Mixed models statistical analyses compared structural parameters between mouthwash and control groups (SAS software; α=0.05). Volocity software permitted visualization of 3D distributions of overlaid biofilm components (fluorochromes). Results: Mouthwash BIO produced biofilm structures that differed significantly from the control (p<0.05) on both resin composites, whereas LTO did not produce differences (p>0.05) on either product. Conclusions: This methodology efficiently and successfully quantified and compared concurrent 3D distributions of three major components within S. mutans biofilms on relevant substrates, thus overcoming two challenges to simultaneous assessment of biofilm components. This method can also be used to determine the efficacy of antibacterial/antifouling agents against multiple biofilm components, as shown using mouthwashes. Furthermore, this method has broad application because it facilitates comparison of 3D structures/architecture of biofilms in a variety of disciplines.  相似文献   

14.
A theoretical approach for estimating association free energies of alpha-helices in nonpolar media has been developed. The parameters of energy functions have been derived from DeltaDeltaG values of mutants in water-soluble proteins and partitioning of organic solutes between water and nonpolar solvents. The proposed approach was verified successfully against three sets of published data: (1) dissociation constants of alpha-helical oligomers formed by 27 hydrophobic peptides; (2) stabilities of 22 bacteriorhodopsin mutants, and (3) protein-ligand binding affinities in aqueous solution. It has been found that coalescence of helices is driven exclusively by van der Waals interactions and H-bonds, whereas the principal destabilizing contributions are represented by side-chain conformational entropy and transfer energy of atoms from a detergent or lipid to the protein interior. Electrostatic interactions of alpha-helices were relatively weak but important for reproducing the experimental data. Immobilization free energy, which originates from restricting rotational and translational rigid-body movements of molecules during their association, was found to be less than 1 kcal/mole. The energetics of amino acid substitutions in bacteriorhodopsin was complicated by specific binding of lipid and water molecules to cavities created in certain mutants.  相似文献   

15.
The mitochondrial rhomboid protease Parl governs apoptosis, morphology, metabolism and might be implicated in Parkinson's disease, but the structural basis of its activity and complex regulation remain unknown. We report the discovery of γ-cleavage, a proteolytic event on the loop connecting the first transmembrane helix (TMH) of Parl to the 6-TMH catalytic rhomboid domain of the protease. This cleavage disrupts the '1+6' structure that defines every mitochondrial rhomboid and generates a new form of Parl, PROD (Parl-rhomboid-domain). Structure-function analysis of Parl suggests that γ-cleavage could be implicated in eliminating Parl proteolytic activity, and structural modeling of PROD reveals structural conservation with the bacterial rhomboid GlpG. However, unlike bacterial rhomboids, which employ a diad-based mechanism of catalysis, Parl appears to use a conserved mitochondrial rhomboid-specific Asp residue on TMH-5 in a triad-based mechanism of catalysis. This work provides unexpected insights into the structural determinants regulating Parl stability and activity in vivo, and reveals a complex cascade of proteolytic events controlling the function of the protease in the mitochondrion.  相似文献   

16.
 A data matrix of 143 morphological and chemical characters for 142 genera of euasterids according to the APG system was compiled and complemented with rbcL and ndhF sequences for most of the genera. The data were subjected to parsimony analysis and support was assessed by bootstrapping. Strict consensus trees from analyses of morphology alone and morphology + rbcL + ndhF are presented. The morphological data recover several groups supported by molecular data but at the level of orders and above relationships are only superficially in agreement with molecular studies. The analyses provide support for monophyly of Gentianales, Aquifoliales, Apiales, Asterales, and Dipsacales. All data indicate that Adoxaceae are closely related to Dipsacales and hence they should be included in that order. The trees were used to assess some possible morphological synapomorphies for euasterids I and II and for the orders of the APG system. Euasterids I are generally characterised by opposite leaves, entire leaf margins, hypogynous flowers, “early sympetaly” with a ring-shaped corolla primordium, fusion of stamen filaments with the corolla tube, and capsular fruits. Euasterids II often have alternate leaves, serrate-dentate leaf margins, epigynous flowers, “late sympetaly” with distinct petal primordia, free stamen filaments, and indehiscent fruits. It is unclear which of these characters represent synapomorphies and symplesiomorphies for the two groups, respectively, and there are numerous expections to be interpreted as reversals and parallelisms. Received August 28, 2000 Accepted August 7, 2001  相似文献   

17.
Cutinases are esterases that release fatty acids from the apoplastic layer in plants. As they accept bulky and hydrophobic substrates, cutinases could be used in many applications, ranging from valorization of bark-rich side streams to plastic recycling. Advancement of these applications, however, requires deeper knowledge of cutinases’ biodiversity and structure–function relationships. Here, we mined over 3000 members from carbohydrate esterase family 5 for putative cutinases and condensed it to 151 genes from known or putative lignocellulose-targeting organisms. The 151 genes were subjected to a phylogenetic analysis, which showed that cutinases with available crystal structures were phylogenetically closely related. We then selected nine phylogenic diverse cutinases for recombinant production and characterized their kinetic activity against para-nitrophenol substrates esterified with consecutively longer alkyl chains (pNP-C2 to C16). Each investigated cutinase had a unique activity fingerprint against the tested pNP substrates. The five enzymes with the highest activity on pNP-C12 and C16, indicative of activity on bulky hydrophobic compounds, were selected for in-depth kinetic and structure–function analysis. All five enzymes showed a decrease in kcat values with increasing substrate chain length, whereas KM values and binding energies (calculated from in silico docking analysis) improved. Two cutinases from Fusarium solani and Cryptococcus sp. exhibited outstandingly low KM values, resulting in high catalytic efficiencies toward pNP-C16. Docking analysis suggested that different clades of the phylogenetic tree may harbor enzymes with different modes of substrate interaction, involving a solvent-exposed catalytic triad, a lipase-like lid, or a clamshell-like active site possibly formed by flexible loops.  相似文献   

18.
光谱和微量热法分析柑橘苷(naringin,NAR)与牛血清白蛋白(bovine serum albumin, BSA)分子间作用,构建NAR与BSA分子间作用的理论模型。采用紫外-荧光光谱法解析Fōrster方程求得NAR与BSA分子间作用及分子间作用的临界距离r,等温滴定微量热技术测定NAR与BSA分子间作用的积分量热曲线,获得Δ H并通过Gibbs-Helmholtz方程获取Δ S和Δ G。基于光谱和微量热辅助分析,构建NAR与BSA分子间作用的理论模型。结果表明,光谱法测出NAR与BSA发生分子间作用,NAR与BSA分子间作用的临界距离为2.06 nm,表明NAR与BSA分子间作用为短程分子间作用。微量热法成功测定出NAR与BSA分子间的热力学参数Δ H<0,Δ S>0,Δ G<0,说明NAR与BSA分子间作用是自发进行的放热相互作用。依据Ross理论分析NAR与BSA分子间作用力主要是疏水作用力和静电作用力。模型构建结果说明,NAR与BSA分子间作用主要发生在BSA的domain IIA区域,NAR与BSA分子间作用力主要是静电作用力,兼有范德华作用力和氢键。实验与理论模型构建结果基本一致。本研究工作可为深入了解蛋白质与大分子化合物间的作用以及研究微观药理学机制提供有益的参考。  相似文献   

19.
物种多样性和种域宽度沿环境梯度的分布格局及其成因机制一直是生物地理学和生态学讨论的重要议题。本研究采用多元回归模型和方差分离的方法判断面积、水分和能量、边界限制对秦岭两栖、爬行动物及其不同区系成分的物种丰富度海拔梯度分布格局的影响。结果表明, 秦岭两栖爬行动物及其不同区系成分的物种丰富度均呈单峰分布格局, 但峰值分布的海拔段有所差异。形成这种格局是各种因素相互作用的结果, 3种假设的独立解释力较低。水分能量动态假设对两栖、爬行动物物种的丰富度格局有很强的解释能力, 但水分和能量的解释力中有很大一部分属于边界限制、面积的协同作用, 在解释两栖动物的海拔分布格局时, 边界限制与水分和能量之间存在较强的共线性, 而在解释爬行动物的海拔分布格局时, 面积与水分和能量之间存在较强的共线性。同时, 本研究采用Stevens法和逐种法对Rapoport法则进行了验证。结果表明, 爬行动物物种种域的海拔梯度格局基本上支持Rapoport法则, 两栖动物很难判断是否支持Rapoport法则。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号