首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Background and Aims

Plants display a wide range of traits that allow them to use animals for vital tasks. To attract and reward aggressive ants that protect developing leaves and flowers from consumers, many plants bear extrafloral nectaries (EFNs). EFNs are exceptionally diverse in morphology and locations on a plant. In this study the evolution of EFN diversity is explored by focusing on the legume genus Senna, in which EFNs underwent remarkable morphological diversification and occur in over 80 % of the approx. 350 species.

Methods

EFN diversity in location, morphology and plant ontogeny was characterized in wild and cultivated plants, using scanning electron microscopy and microtome sectioning. From these data EFN evolution was reconstructed in a phylogenetic framework comprising 83 Senna species.

Key Results

Two distinct kinds of EFNs exist in two unrelated clades within Senna. ‘Individualized’ EFNs (iEFNs), located on the compound leaves and sometimes at the base of pedicels, display a conspicuous, gland-like nectary structure, are highly diverse in shape and characterize the species-rich EFN clade. Previously overlooked ‘non-individualized’ EFNs (non-iEFNs) embedded within stipules, bracts, and sepals are cryptic and may represent a new synapomorphy for clade II. Leaves bear EFNs consistently throughout plant ontogeny. In one species, however, early seedlings develop iEFNs between the first pair of leaflets, but later leaves produce them at the leaf base. This ontogenetic shift reflects our inferred diversification history of iEFN location: ancestral leaves bore EFNs between the first pair of leaflets, while leaves derived from them bore EFNs either between multiple pairs of leaflets or at the leaf base.

Conclusions

EFNs are more diverse than previously thought. EFN-bearing plant parts provide different opportunities for EFN presentation (i.e. location) and individualization (i.e. morphology), with implications for EFN morphological evolution, EFN–ant protective mutualisms and the evolutionary role of EFNs in plant diversification.  相似文献   

2.

Background and Aims

Although most studies on plant defence strategies have focused on a particular defence trait, some plant species develop multiple defence traits. To clarify the effects of light on the development of multiple defence traits, the production of direct and indirect defence traits of young plants of Mallotus japonicus were examined experimentally under different light conditions.

Methods

The young plants were cultivated under three light conditions in the experimental field for 3 months from May to July. Numbers of ants and pearl bodies on leaves in July were examined. After cultivation, the plants were collected and the developments of trichomes and pellucid dots, and extrafloral nectaries (EFNs) on the leaves were examined. On plants without nectar-collecting insects, the size of EFNs and the volume of extrafloral nectar secreted from the EFNs were examined.

Key results

Densities of trichomes and pellucid dots did not differ significantly among the plants under the different light conditions, suggesting that the chemical and physical defences function under both high and low light availability. The number of EFNs on the leaves did not differ significantly among the plants under the different light conditions, but there appeared to be a trade-off between the size of EFNs and the number of pearl bodies; the largest EFNs and the smallest number of pearl bodies were found under high light availability. EFN size was significantly correlated with the volume of extrafloral nectar secreted for 24 h. The number of ants on the plants was smaller under low light availability than under high and moderate light availability.

Conclusions

These results suggest that direct defence traits function regardless of light conditions, but light conditions affected the development of indirect defence traits.  相似文献   

3.

Background and Aims

Invasive plants can be released from specialist herbivores and encounter novel generalists in their introduced ranges, leading to variation in defence among native and invasive populations. However, few studies have examined how constitutive and induced indirect defences change during plant invasion, especially during the juvenile stage.

Methods

Constitutive extrafloral nectar (EFN) production of native and invasive populations of juvenile tallow tree (Triadica sebifera) were compared, and leaf clipping, and damage by a native specialist (Noctuid) and two native generalist caterpillars (Noctuid and Limacodid) were used to examine inducible EFN production.

Key results

Plants from introduced populations had more leaves producing constitutive EFN than did native populations, but the content of soluble solids of EFN did not differ. Herbivores induced EFN production more than simulated herbivory. The specialist (Noctuid) induced more EFN than either generalist for native populations. The content of soluble solids in EFN was higher (2·1 times), with the specialist vs. the generalists causing the stronger response for native populations, but the specialist response was always comparable with the generalist responses for invasive populations.

Conclusions

These results suggest that constitutive and induced indirect defences are retained in juvenile plants of invasive populations even during plant establishment, perhaps due to generalist herbivory in the introduced range. However, responses specific to a specialist herbivore may be reduced in the introduced range where specialists are absent. This decreased defence may benefit specialist insects that are introduced for classical biological control of invasive plants.  相似文献   

4.

Background and Aims

Early ontogenetic stages of myrmecophytic plants are infrequently associated with ants, probably due to constraints on the production of rewards. This study reports for the first time the anatomical and histological limitations constraining the production of extrafloral nectar in young plants, and the implications that the absence of protective ants imposes for plants early during their ontogeny are discussed.

Methods

Juvenile, pre-reproductive and reproductive plants of Turnera velutina were selected in a natural population and their extrafloral nectaries (EFNs) per leaf were quantified. The anatomical and morphological changes in EFNs during plant ontogeny were studied using scanning electron and light microscopy. Extrafloral nectar volume and sugar concentration were determined as well as the number of patrolling ants.

Key Results

Juvenile plants were unable to secrete or contain nectar. Pre-reproductive plants secreted and contained nectar drops, but the highest production was achieved at the reproductive stage when the gland is fully cup-shaped and the secretory epidermis duplicates. No ants were observed in juvenile plants, and reproductive individuals received greater ant patrolling than pre-reproductive individuals. The issue of the mechanism of extrafloral nectar release in T. velutina was solved given that we found an anatomical, transcuticular pore that forms a channel-like structure and allows nectar to flow outward from the gland.

Conclusions

Juvenile stages had no ant protection against herbivores probably due to resource limitation but also due to anatomical constraints. The results are consistent with the growth-differentiation balance hypothesis. As plants age, they increase in size and have larger nutrient-acquiring, photosynthetic and storage capacity, so they are able to invest in defence via specialized organs, such as EFNs. Hence, the more vulnerable juvenile stage should rely on other defensive strategies to reduce the negative impacts of herbivory.  相似文献   

5.

Background and Aims

Functional groups of species interact and coevolve in space and time, forming complex networks of interacting species. A long-term study of temporal variation of an ant–plant network is presented with the aims of: (1) depicting its structural changes over a 20-year period; (2) detailing temporal variation in network topology, as revealed by nestedness and modularity analysis and other parameters (i.e. connectance, niche overlap); and (3) identifying long-term turnover in taxonomic structure (i.e. switches in ant resource use or plant visitor assemblages according to taxa).

Methods

Fieldwork was carried out at La Mancha, Mexico, and ant–plant interactions were observed between 1989 and 1991, between 1998 and 2000, and between May 2010 and 2011. Occurrences of ants on extrafloral nectaries (EFNs) were recorded. The resulting ant–plant networks were constructed from qualitative presence–absence data determined by a species–species matrix defined by the frequency of occurrence of each pairwise ant–plant interaction.

Key Results

Network variation across time was stable and a persistent nested structure may have contributed to the maintenance of resilient and species-rich communities. Modularity was lower than expected, especially in the most recent networks, indicating that the community exhibited high overlap among interacting species (e.g. few species were hubs in the more recent network, being partly responsible for the nested pattern). Structurally, the connections created among modules by super-generalists gave cohesion to subsets of species that otherwise would remain unconnected. This may have allowed an increasing cascade-effect of evolutionary events among modules. Mutualistic ant–plant interactions were structured 20 years ago mainly by the subdominant nectarivorous ant species Camponotus planatus and Crematogaster brevispinosa, which monopolized the best extrafloral nectar resources and out-competed other species with broader feeding habits. Through time, these ants, which are still present, lost their position as network hubs and diminished in their importance in structuring the network; simultaneously, plants gained in importance.

Conclusions

The long-term network analysis reveals a decrease in attended plant species richness, a notable increase in plant species participation from 1990 to 2010 (sustained by less plant taxonomic similarity in the older 1990 network), an increase in the number of ant species and a diminishing dominance of super-generalist ants. The structure of the community has remained highly nested and connected with low modularity, suggesting overall a more participative, homogeneous, cohesive interaction network. Although previous studies have suggested that interactions between ants and EFN-bearing plants are susceptible to seasonality, abiotic factors and perturbation, this cohesive structure appears to be the key for biodiversity and community maintenance.  相似文献   

6.
BACKGROUND AND AIMS: A wide variety of plants produce extrafloral nectaries (EFNs) that are visited by predatory arthropods. But very few studies have investigated the relationship between plant genetic variation and EFNs. The presence of foliar EFNs is highly variable among different aspen (Populus tremuloides) genotypes and the EFNs are visited by parasitic wasps and predatory flies. The aim here was to determine the heritability of EFNs among aspen genotypes and age classes, possible trade-offs between direct and indirect defences, EFN induction following herbivory, and the relationship between EFNs and predatory insects. METHODS: EFN density was quantified among aspen genotypes in Wisconsin on trees of different ages and broad-sense heritability from common garden trees was calculated. EFNs were also quantified in natural aspen stands in Utah. From the common garden trees foliar defensive chemical levels were quantified to evaluate their relationship with EFN density. A defoliation experiment was performed to determine if EFNs can be induced in response to herbivory. Finally, predatory arthropod abundance among aspen trees was quantified to determine the relationship between arthropod abundance and EFNs. KEY RESULTS: Broad-sense heritability for expression (0.74-0.82) and induction (0.85) of EFNs was high. One-year-old trees had 20% greater EFN density than 4-year-old trees and more than 50% greater EFN density than > or =10-year-old trees. No trade-offs were found between foliar chemical concentrations and EFN density. Predatory fly abundance varied among aspen genotypes, but predatory arthropod abundance and average EFN density were not related. CONCLUSIONS: Aspen extrafloral nectaries are strongly genetically determined and have the potential to respond rapidly to evolutionary forces. The pattern of EFN expression among different age classes of trees appears to follow predictions of optimal defence theory. The relationship between EFNs and predators likely varies in relation to multiple temporal and environmental factors.  相似文献   

7.

Background

Inflorescences are complex structures with many functions. At anthesis they present the flowers in ways that allow for the transfer of pollen and optimization of the plant''s reproductive success. During flower and fruit development they provide nutrients to the developing flowers and fruits. At fruit maturity they support the fruits prior to dispersal, and facilitate effective fruit and seed dispersal. From a structural point of view, inflorescences have played important roles in systematic and phylogenetic studies. As functional units they facilitate reproduction, and are largely shaped by natural selection.

Scope

The papers in this Special Issue bridge the gap between structural and functional approaches to inflorescence evolution. They include a literature review of inflorescence function, an experimental study of inflorescences as essential contributors to the display of flowers, and two papers that present new methods and concepts for understanding inflorescence diversity and for dealing with terminological problems. The transient model of inflorescence development is evaluated in an ontogenetic study, and partially supported. Four papers present morphological and ontogenetic studies of inflorescence development in monophyletic groups, and two of these evaluate the usefulness of Hofmeister''s Rule and inhibitory fields to predict inflorescence structure. In the final two papers, Bayesian and Monte-Carlo methods are used to elucidate inflorescence evolution in the Panicoid grasses, and a candidate gene approach is used in an attempt to understand the evolutionary genetics of inflorescence evolution in the genus Cornus (Cornaceae). Taken as a whole, the papers in this issue provide a glimpse of contemporary approaches to the study of the structure, development, and evolution of inflorescences, and suggest fruitful new directions for research.  相似文献   

8.

Background and Aims

Climate change is expected to alter the geographic range of many plant species dramatically. Predicting this response will be critical to managing the conservation of plant resources and the effects of invasive species. The aim of this study was to predict the response of temperate homosporous ferns to climate change.

Methods

Genetic diversity and changes in distribution range were inferred for the diploid rock fern Asplenium fontanum along a South–North transect, extending from its putative last glacial maximum (LGM) refugia in southern France towards southern Germany and eastern-central France. This study reconciles observations from distribution models and phylogeographic analyses derived from plastid and nuclear diversity.

Key Results

Genetic diversity distribution and niche modelling propose that genetic diversity accumulates in the LGM climate refugium in southern France with the formation of a diversity gradient reflecting a slow, post-LGM range expansion towards the current distribution range. Evidence supports the fern''s preference for outcrossing, contradicting the expectation that homosporous ferns would populate new sites by single-spore colonization. Prediction of climate and distribution range change suggests that a dramatic loss of range and genetic diversity in this fern is possible. The observed migration is best described by the phalanx expansion model.

Conclusions

The results suggest that homosporous ferns reproducing preferentially by outcrossing accumulate genetic diversity primarily in LGM climate refugia and may be threatened if these areas disappear due to global climate change.  相似文献   

9.

Background and Aims

Archipelagos are unique systems for studying evolutionary processes promoting diversification and speciation. The islands of the Mediterranean basin are major areas of plant richness, including a high proportion of narrow endemics. Many endemic plants are currently found in rocky habitats, showing varying patterns of habitat occupancy at different spatial scales throughout their range. The aim of the present study was to understand the impact of varying patterns of population distribution on genetic diversity and structure to shed light on demographic and evolutionary processes leading to population diversification in Crepis triasii, an endemic plant from the eastern Balearic Islands.

Methods

Using allozyme and chloroplast markers, we related patterns of genetic structure and diversity to those of habitat occupancy at a regional (between islands and among populations within islands) and landscape (population size and connectivity) scale.

Key Results

Genetic diversity was highly structured both at the regional and at the landscape level, and was positively correlated with population connectivity in the landscape. Populations located in small isolated mountains and coastal areas, with restricted patterns of regional occupancy, were genetically less diverse and much more differentiated. In addition, more isolated populations had stronger fine-scale genetic structure than well-connected ones. Changes in habitat availability and quality arising from marine transgressions during the Quaternary, as well as progressive fragmentation associated with the aridification of the climate since the last glaciation, are the most plausible factors leading to the observed patterns of genetic diversity and structure.

Conclusions

Our results emphasize the importance of gene flow in preventing genetic erosion and maintaining the evolutionary potential of populations. They also agree with recent studies highlighting the importance of restricted gene flow and genetic drift as drivers of plant evolution in Mediterranean continental islands.  相似文献   

10.

Background

Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed.

Scope

The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research.  相似文献   

11.
Unraveling the diversification history of old, species-rich and widespread clades is difficult because of extinction, undersampling, and taxonomic uncertainty. In the context of these challenges, we investigated the timing and mode of lineage diversification in Senna (Leguminosae) to gain insights into the evolutionary role of extrafloral nectaries (EFNs). EFNs secrete nectar, attracting ants and forming ecologically important ant-plant mutualisms. In Senna, EFNs characterize one large clade (EFN clade), including 80% of its 350 species. Taxonomic accounts make Senna the largest caesalpinioid genus, but quantitative comparisons to other taxa require inferences about rates. Molecular dating analyses suggest that Senna originated in the early Eocene, and its major lineages appeared during early/mid Eocene to early Oligocene. EFNs evolved in the late Eocene, after the main radiation of ants. The EFN clade diversified faster, becoming significantly more species-rich than non-EFN clades. The shift in diversification rates associated with EFN evolution supports the hypothesis that EFNs represent a (relatively old) key innovation in Senna. EFNs may have promoted the colonization of new habitats appearing with the early uplift of the Andes. This would explain the distinctive geographic concentration of the EFN clade in South America.  相似文献   

12.
13.

Background and Aims

The occurrence of nectaries in fruits is restricted to a minority of plant families and consistent reports of their occurrence are not found associated with Fabaceae, mainly showing cellular details. The present study aims to describe the anatomical organization and ultrastructure of the pericarpial nectaries (PNs) in Erythrina speciosa, a bird-pollinated species, discussing functional aspects of these unusual structures.

Methods

Samples of floral buds, ovaries of flowers at anthesis and fruits at several developmental stages were fixed and processed by the usual methods for studies using light, and scanning and transmission electron microscopy. Nectar samples collected by filter paper wicks were subjected to chemical analysis using thin-layer chromatography.

Key Results

The PNs are distributed in isolation on the exocarp. Each PN is represented by a single hyaline trichome that consists of a basal cell at epidermal level, stalk cell(s) and a small secretory multicellular head. The apical stalk cell shows inner periclinal and anticlinal walls impregnated by lipids and lignin and has dense cytoplasm with a prevalence of mitochondria and endoplasmic reticulum. The secretory cells show voluminous nuclei and dense cytoplasm, which predominantly has dictyosomes, rough endoplasmic reticulum, plastids, mitochondria and free ribosomes. At the secretory stage the periplasmic space is prominent and contains secretion residues. Tests for sugar indicate the presence of non-reducing sugars in the secretory cells. Nectar samples from PNs contained sucrose, glucose and fructose.

Conclusions

The secretory stage of these PNs extends until fruit maturation and evidence suggests that the energetic source of nectar production is based on pericarp photosynthesis. Patrolling ants were seen foraging on fruits during all stages of fruit development, which suggests that the PNs mediate a symbiotic relationship between ants and plant, similar to the common role of many extrafloral nectaries.  相似文献   

14.
15.

Background and Aims

In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined.

Methods

Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses.

Key Results

The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants.

Conclusions

It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions.  相似文献   

16.
Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for ant–plant–herbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade‐offs with new trichomes) that may have affected the evolution of ant–plant associations. We measured seven EFN quantitative traits in all 105 species included in a well‐supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on ant–EFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K‐values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static‐optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade‐off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K‐values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group.  相似文献   

17.

Background and Aims

Stereochemical variation is widely known to influence the bioactivity of compounds in the context of pharmacology and pesticide science, but our understanding of its importance in mediating plant–herbivore interactions is limited, particularly in field settings. Similarly, sesquiterpene lactones are a broadly distributed class of putative defensive compounds, but little is known about their activities in the field.

Methods

Natural variation in sesquiterpene lactones of the common cocklebur, Xanthium strumarium (Asteraceae), was used in conjunction with a series of common garden experiments to examine relationships between stereochemical variation, herbivore damage and plant fitness.

Key Results

The stereochemistry of sesquiterpene lactone ring junctions helped to explain variation in plant herbivore resistance. Plants producing cis-fused sesquiterpene lactones experienced significantly higher damage than plants producing trans-fused sesquiterpene lactones. Experiments manipulating herbivore damage above and below ambient levels found that herbivore damage was negatively correlated with plant fitness. This pattern translated into significant fitness differences between chemotypes under ambient levels of herbivore attack, but not when attack was experimentally reduced via pesticide.

Conclusions

To our knowledge, this work represents only the second study to examine sesquiterpene lactones as defensive compounds in the field, the first to document herbivore-mediated natural selection on sesquiterpene lactone variation and the first to investigate the ecological significance of the stereochemistry of the lactone ring junction. The results indicate that subtle differences in stereochemistry may be a major determinant of the protective role of secondary metabolites and thus of plant fitness. As stereochemical variation is widespread in many groups of secondary metabolites, these findings suggest the possibility of dynamic evolutionary histories within the Asteraceae and other plant families showing extensive stereochemical variation.  相似文献   

18.
Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT). Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN) bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population) distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant–EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1) a population with smaller ants (Crematogaster crinosa) matched with low abundance of EFNs; and (2) seven populations with bigger ants (Camponotus species) matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated with abundant and highly detrimental herbivores. Our findings provide insights on the ecology and evolution of plant–ant guarding systems, and suggest new directions to research on facultative mutualistic interactions at wide geographic scales.  相似文献   

19.

Background

Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches.

Scope

In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.Key words: Floral traits, generalization and specialization, global change, male fitness, mating systems, multiple paternity, plant–pollinator networks, pollen and gene dispersal, pollinator behaviour, pollination syndromes, pollination webs, self-fertilization  相似文献   

20.

Background and Aims

In mountain plant populations, local adaptation has been described as one of the main responses to climate warming, allowing plants to persist under stressful conditions. This is especially the case for marginal populations at their lowest elevation, as they are highly vulnerable. Adequate levels of genetic diversity are required for selection to take place, while high levels of altitudinal gene flow are seen as a major limiting factor potentially precluding local adaptation processes. Thus, a compromise between genetic diversity and gene flow seems necessary to guarantee persistence under oncoming conditions. It is therefore critical to determine if gene flow occurs preferentially between mountains at similar altitudinal belts, promoting local adaptation at the lowest populations, or conversely along altitude within each mountain.

Methods

Microsatellite markers were used to unravel genetic diversity and population structure, inbreeding and gene flow of populations at two nearby altitudinal gradients of Silene ciliata, a Mediterranean high-mountain cushion plant.

Key Results

Genetic diversity and inbreeding coefficients were similar in all populations. Substantial gene flow was found both along altitudinal gradients and horizontally within each elevation belt, although greater values were obtained along altitudinal gradients. Gene flow may be responsible for the homogeneous levels of genetic diversity found among populations. Bayesian cluster analyses also suggested that shifts along altitudinal gradients are the most plausible scenario.

Conclusions

Past population shifts associated with glaciations and interglacial periods in temperate mountains may partially explain current distributions of genetic diversity and population structure. In spite of the predominance of gene flow along the altitudinal gradients, local genetic differentiation of one of the lower populations together with the detection of one outlier locus might support the existence of different selection forces at low altitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号