首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Processing bodies and plant development   总被引:1,自引:0,他引:1  
Processing bodies (P-bodies) contain RNA-protein complexes linked to cytoplasmic RNA decay pathways including mRNA decapping, nonsense-mediated decay (NMD) and small RNA-mediated decay. Plants deficient in P-body components display severe developmental perturbations, suggesting that these cytoplasmic bodies play important roles in regulating gene expression during plant development. Here, we summarize recent progress in the genetic dissection of P-body components and their roles in translational repression and mRNA decapping.  相似文献   

2.
3.
Processing bodies (P-bodies) are dynamic cytoplasmic structures involved in mRNA degradation, but the mechanism that governs their formation is poorly understood. In this paper, we address a role of Like-Sm (LSm) proteins in formation of P-bodies and provide evidence that depletion of nuclear LSm8 increases the number of P-bodies, while LSm8 overexpression leads to P-body loss. We show that LSm8 knockdown causes relocalization of LSm4 and LSm6 proteins to the cytoplasm and suggest that LSm8 controls nuclear accumulation of all LSm2–7 proteins. We propose a model in which redistribution of LSm2–7 to the cytoplasm creates new binding sites for other P-body components and nucleates new, microscopically visible structures. The model is supported by prolonged residence of two P-body proteins, DDX6 and Ago2, in P-bodies after LSm8 depletion, which indicates stronger interactions between these proteins and P-bodies. Finally, an increased number of P-bodies has negligible effects on microRNA-mediated translation repression and nonsense mediated decay, further supporting the view that the function of proteins localized in P-bodies is independent of visible P-bodies.  相似文献   

4.
Processing bodies (P-bodies) are cytoplasmic RNA granules that contain translationally repressed messenger ribonucleoproteins (mRNPs) and messenger RNA (mRNA) decay factors. The physical interactions that form the individual mRNPs within P-bodies and how those mRNPs assemble into larger P-bodies are unresolved. We identify direct protein interactions that could contribute to the formation of an mRNP complex that consists of core P-body components. Additionally, we demonstrate that the formation of P-bodies that are visible by light microscopy occurs either through Edc3p, which acts as a scaffold and cross-bridging protein, or via the "prionlike" domain in Lsm4p. Analysis of cells defective in P-body formation indicates that the concentration of translationally repressed mRNPs and decay factors into microscopically visible P-bodies is not necessary for basal control of translation repression and mRNA decay. These results suggest a stepwise model for P-body assembly with the initial formation of a core mRNA-protein complex that then aggregates through multiple specific mechanisms.  相似文献   

5.
6.
7.
Cytoplasmic ribonucleoprotein granules, known as processing bodies (P-bodies), contain a common set of conserved RNA-processing enzymes, and mRNAs with AU-rich elements (AREs) are delivered to P-bodies for translational silencing. Although the dynamics of P-bodies is physically linked to cytoskeletal network, it is unclear how small GTPases are involved in the P-body regulation and the ARE-mRNA metabolism. We found here that glucose depletion activates RhoA GTPase and alters the P-body dynamics in HeLa cells. These glucose-depleted effects are reproduced by the overexpression of the RhoA-subfamily GTPases and conversely abolished by the inhibition of RhoA activation. Interestingly, both RhoA activation and glucose depletion inhibit the mRNA accumulation and degradation. These findings indicate that RhoA participates in the stress-induced rearrangement of P-bodies and the release of nucleated ARE-mRNAs for their stabilization.  相似文献   

8.
Processing bodies (P-bodies) are cytoplasmic foci implicated in the regulation of mRNA translation, storage, and degradation. Key effectors of microRNA (miRNA)-mediated RNA interference (RNAi), such as Argonaute-2 (Ago2), miRNAs, and their cognate mRNAs, are localized to these structures; however, the precise role that P-bodies and their component proteins play in small interfering RNA (siRNA)-mediated RNAi remains unclear. Here, we investigate the relationship between siRNA-mediated RNAi, RNAi machinery proteins, and P-bodies. We show that upon transfection into cells, siRNAs rapidly localize to P-bodies in their native double-stranded conformation, as indicated by fluorescence resonance energy transfer imaging and that Ago2 is at least in part responsible for this siRNA localization pattern, indicating RISC involvement. Furthermore, siRNA transfection induces up-regulated expression of both GW182, a key P-body component, and Ago2, indicating that P-body localization and interaction with GW182 and Ago2 are important in siRNA-mediated RNAi. By virtue of being centers where these proteins and siRNAs aggregate, we propose that the P-body microenvironment, whether as microscopically visible foci or submicroscopic protein complexes, facilitates siRNA processing and siRNA-mediated silencing through the action of its component proteins.  相似文献   

9.
Recent experiments have defined cytoplasmic foci, referred to as processing bodies (P-bodies), that contain untranslating mRNAs in conjunction with proteins involved in translation repression and mRNA decapping and degradation. However, the order of protein assembly into P-bodies and the interactions that promote P-body assembly are unknown. To gain insight into how yeast P-bodies assemble, we examined the P-body accumulation of Dcp1p, Dcp2p, Edc3p, Dhh1p, Pat1p, Lsm1p, Xrn1p, Ccr4p, and Pop2p in deletion mutants lacking one or more P-body component. These experiments revealed that Dcp2p and Pat1p are required for recruitment of Dcp1p and of the Lsm1-7p complex to P-bodies, respectively. We also demonstrate that P-body assembly is redundant and no single known component of P-bodies is required for P-body assembly, although both Dcp2p and Pat1p contribute to P-body assembly. In addition, our results indicate that Pat1p can be a nuclear-cytoplasmic shuttling protein and acts early in P-body assembly. In contrast, the Lsm1-7p complex appears to primarily function in a rate limiting step after P-body assembly in triggering decapping. Taken together, these results provide insight both into the function of individual proteins involved in mRNA degradation and the mechanisms by which yeast P-bodies assemble.  相似文献   

10.
Regulated mRNA decay is essential for eukaryotic survival but the mechanisms for regulating global decay and coordinating it with growth, nutrient, and environmental cues are not known. Here we show that a signal transduction pathway containing the Pkh1/Pkh2 protein kinases and one of their effector kinases, Pkc1, is required for and regulates global mRNA decay at the deadenylation step in Saccharomyces cerevisiae. Additionally, many stresses disrupt protein synthesis and release mRNAs from polysomes for incorporation into P-bodies for degradation or storage. We find that the Pkh1/2-Pkc1 pathway is also required for stress-induced P-body assembly. Control of mRNA decay and P-body assembly by the Pkh-Pkc1 pathway only occurs in nutrient-poor medium, suggesting a novel role for these processes in evolution. Our identification of a signaling pathway for regulating global mRNA decay and P-body assembly provides a means to coordinate mRNA decay with other cellular processes essential for growth and long-term survival. Mammals may use similar regulatory mechanisms because components of the decay apparatus and signaling pathways are conserved.  相似文献   

11.
Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5′ cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species.  相似文献   

12.
13.
The APOBEC3 cytidine deaminases play a critical role in host-mediated defense against exogenous viruses, most notably, human immunodeficiency virus type-1 (HIV-1) and endogenous transposable elements. APOBEC3G and APOBEC3F interact with numerous proteins that regulate cellular RNA metabolism, including components of the RNA-induced silencing complex (RISC), and colocalize with a subset of these proteins to mRNA processing bodies (P bodies), which are sites of mRNA translational repression and decay. We sought to determine the role of P bodies and associated proteins in HIV-1 replication and APOBEC3 antiviral activity. While we established a positive correlation between APOBEC3 protein incorporation into virions and localization to P bodies, depletion of the P-body components DDX6 or Lsm1 did not affect HIV-1 replication, APOBEC3 packaging into virions or APOBEC3 protein mediated inhibition of HIV-1 infectivity. In addition, neither HIV-1 genomic RNA nor Gag colocalized with P-body proteins. However, simultaneous depletion of multiple Argonaute family members, the effector proteins of RISC, could modestly increase viral infectivity. Because some APOBEC3 proteins interact with several Argonaute proteins, we also tested whether they could modulate microRNA (miRNA) activity. We found no evidence for the specific regulation of miRNA function by the APOBEC3 proteins, though more general effects on transfected gene expression were observed. In sum, our results indicate that P bodies and certain associated proteins do not regulate HIV-1 replication or APOBEC3 protein antiviral activity. Localization to P bodies may therefore provide a means of sequestering APOBEC3 enzymatic activity away from cellular DNA or may be linked to as yet unidentified cellular functions.  相似文献   

14.
15.
Processing bodies (P-bodies) are cytoplasmic non-membranous domains involved in the regulation of eukaryotic gene expression. Since their discovery, several studies using fluorescence-based strategies have uncovered their pivotal role in mRNA metabolism, particularly during translation repression and/or mRNA degradation. Yet, P-bodies still remain a "black box" in which numerous proteins accumulate next to RNAs to regulate their fate by unknown mechanisms. In this study, we investigated the ultrastructural organization of P-bodies in human cells. Using a wide range of original electron microscopy strategies, including high-pressure freezing and freeze substitution, we found that P-bodies are huge ribonucleoprotein complexes located in the close proximity of mitochondria and ribosomes, in which regulatory factors exhibit differential localization depending on their activity on mRNAs. We describe the first experiment pairing immunogold labeling with electron tomography (immunoelectron tomography) of a human P-body. Overall, the results depict a P-body organization that comprises at least two distinct compartments: a dense core on which peripheral protrusions are anchored.  相似文献   

16.
Tight control of translation is fundamental for eukaryotic cells, and deregulation of proteins implicated contributes to numerous human diseases. The neurodegenerative disorder spinocerebellar ataxia type 2 is caused by a trinucleotide expansion in the SCA2 gene encoding a lengthened polyglutamine stretch in the gene product ataxin-2, which seems to be implicated in cellular RNA-processing pathways and translational regulation. Here, we substantiate a function of ataxin-2 in such pathways by demonstrating that ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6, a component of P-bodies and stress granules, representing cellular structures of mRNA triage. We discovered that altered ataxin-2 levels interfere with the assembly of stress granules and cellular P-body structures. Moreover, ataxin-2 regulates the intracellular concentration of its interaction partner, the poly(A)-binding protein, another stress granule component and a key factor for translational control. Thus, our data imply that the cellular ataxin-2 concentration is important for the assembly of stress granules and P-bodies, which are main compartments for regulating and controlling mRNA degradation, stability, and translation.  相似文献   

17.
Processing bodies (P-bodies) are highly dynamic cytoplasmic granules conserved among eukaryotes. They are present under normal growth conditions and contain translationally repressed mRNAs together with proteins from the mRNA decay and microRNA (miRNA) machineries. We have previously shown that the core P-body components PatL1, LSm1, and DDX6 (Rck/p54) are required for hepatitis C virus (HCV) RNA replication; however, how HCV infection affects P-body granules and whether P-body granules per se influence the HCV life cycle remain unresolved issues. Here we show that HCV infection alters P-body composition by specifically changing the localization pattern of P-body components that are required for HCV replication. This effect was not related to an altered expression level of these components and could be reversed by inhibiting HCV replication with a polymerase inhibitor. Similar observations were obtained with a subgenomic replicon that supports only HCV translation and replication, indicating that these early steps of the HCV life cycle trigger the P-body alterations. Finally, P-body disruption by Rap55 depletion did not affect viral titers or HCV protein levels, demonstrating that the localization of PatL1, LSm1, and DDX6 in P-bodies is not required for their function on HCV. Thus, the HCV-induced changes on P-bodies are mechanistically linked to the function of specific P-body components in HCV RNA translation and replication; however, the formation of P-body granules is not required for HCV infection.  相似文献   

18.
Microtubule disruption stimulates P-body formation   总被引:3,自引:0,他引:3       下载免费PDF全文
Processing bodies (P-bodies) are subcellular ribonucleoprotein (RNP) granules that have been hypothesized to be sites of mRNA degradation, mRNA translational control, and/or mRNA storage. Importantly, P-bodies are conserved from yeast to mammals and contain a common set of evolutionarily conserved protein constituents. P-bodies are dynamic structures and their formation appears to fluctuate in correlation with alterations in mRNA metabolism. Despite these observations, little is understood about how P-body structures are formed within the cell. In this study, we demonstrate a relationship between P-bodies and microtubules in the budding yeast, Saccharomyces cerevisiae. First, we demonstrate that disruption of microtubules by treatment with the drug benomyl leads to aggregation of P-body components. Consistent with this finding, we also demonstrate that disruption of microtubules by a temperature-sensitive allele of the major alpha tubulin, TUB1 (tub1-724) stimulates P-body formation. Second, we find that the alpha-tubulin protein Tub1 colocalizes with P-bodies upon microtubule destabilization. Third, we determine that a putative tubulin tyrosine ligase, encoded by YBR094W, is a protein component of P-bodies, providing additional evidence for a physical connection between P-bodies and microtubules. Finally, we establish that P-bodies formed by microtubule destabilization fail to correlate with global changes in the stability of mRNA or in general mRNA translation. These findings demonstrate that the aggregation of P-body components is linked to the intracellular microtubule network, and, further, that P-bodies formed by disruption of microtubules aggregate independent of broad alterations in either mRNA decay or mRNA translation.  相似文献   

19.
The mRNA processing body (P-body) is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1 is a murine oocyte RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. In this study, autoantibodies were used to identify Limkain B (LMKB), the human orthologue of MARF1, as a P-body component. Indirect immunofluorescence demonstrated that Ge-1 (a central component of the mammalian core-decapping complex) co-localized with LMKB in P-bodies. Two-hybrid and co-immunoprecipitation assays were used to demonstrate interaction between Ge-1 and LMKB. The C-terminal 120 amino acids of LMKB mediated interaction with Ge-1 and the N-terminal 1094 amino acids of Ge-1 were required for interaction with LMKB. LMKB is the first protein identified to date that interacts with this portion of Ge-1. LMKB was expressed in human B and T lymphocyte cell lines; depletion of LMKB increased expression of IFI44L, a gene that has been implicated in the cellular response to Type I interferons. The interaction between LMKB/MARF1, a protein that contains RNA-binding domains, and Ge-1, which interacts with core-decapping proteins, suggests that LMKB has a role in the regulation of mRNA stability. LMKB appears to have different functions in different cell types: maintenance of genomic stability in developing oocytes and possible dampening of the inflammatory response in B and T cells.  相似文献   

20.
In somatic cells, untranslated mRNAs accumulate in cytoplasmic foci called processing bodies or P-bodies. P-bodies contain complexes that inhibit translation and stimulate mRNA deadenylation, decapping, and decay. Recently, certain P-body proteins have been found in germ granules, RNA granules specific to germ cells. We have investigated a possible connection between P-bodies and germ granules in Caenorhabditis elegans. We identify PATR-1, the C. elegans homolog of the yeast decapping activator Pat1p, as a unique marker for P-bodies in C. elegans embryos. We find that P-bodies are inherited maternally as core granules that mature differently in somatic and germline blastomeres. In somatic blastomeres, P-bodies recruit the decapping activators LSM-1 and LSM-3. This recruitment requires the LET-711/Not1 subunit of the CCR4-NOT deadenylase and correlates spatially and temporally with the onset of maternal mRNA degradation. In germline blastomeres, P-bodies are maintained as core granules lacking LSM-1 and LSM-3. P-bodies interact with germ granules, but maintain distinct dynamics and components. The maternal mRNA nos-2 is maintained in germ granules, but not in P-bodies. We conclude that P-bodies are distinct from germ granules, and represent a second class of RNA granules that behaves differently in somatic and germline cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号