首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
Switchgrass (Panicum virgatum) productivity on marginal and fertile lands has not been thoroughly evaluated in a systematic manner that includes soil–crop–weather–management interactions and to quantify the risk of failure or success in growing the crop. We used the Systems Approach to Land Use Sustainability (SALUS) model to identify areas with low risk of failing to having more than 8000 kg ha?1 yr?1 switchgrass aboveground net primary productivity (ANPP) under rainfed and unfertilized conditions. In addition, we diagnosed constraining factors for switchgrass growth, and tested the effect of nitrogen fertilizer application on plant productivity across Michigan for 30 years under three climate scenarios (baseline climate in 1981–2010, future climate with emissions using RCP 2.6 and RCP 6.0). We determined that <16% of land in Michigan may have at least 8 Mg ha?1 yr?1 ANPP under rainfed and unfertilized management with a low risk of failure. Of the productive low‐risk land, about 25% was marginal land, with more than 80% of which was affected by limited water availability due to low soil water‐holding capacity and shallow depth. About 80% of the marginal land was N limited under baseline conditions, but that percentage decreased to 58.5% and 42.1% under RCP 2.6 and RCP 6.0 climate scenarios, respectively, partly due to shorter growing season, smaller plants and less N demand. We also found that the majority of Michigan's land could have high switchgrass ANPP and low risk of failure with no more than 60 kgN ha?1 fertilizer input. We believe that the methodology used in this study works at different spatial scales, as well as for other biofuel crops.  相似文献   

2.
Understanding the effects of nitrogen (N) fertilization on Miscanthus × giganteus greenhouse gas emissions, nitrate leaching, and biomass production is an important consideration when using this grass as a biomass feedstock. The objective of this study was to determine the effect of three N fertilization rates (0, 60, and 120?kg?N?ha?1 using urea as the N source) on nitrous oxide (N2O) and carbon dioxide (CO2) emissions, nitrogen leaching, and the biomass yields and N content of M. × giganteus planted in July 2008, and evaluated from 2009 through early 2011 in Urbana, Illinois, USA. While there was no biomass yield response to N fertilization rates in 2009 and 2010, the amount of N in the harvested biomass in 2010 was significantly greater at the 60 and 120?kg?N?ha?1?N rates. There was no significant CO2 emission response to N rates in 2009 or 2010. Similarly, N fertilization did not increase cumulative N2O emissions in 2009, but cumulative N2O emissions did increase in 2010 with N fertilization. During 2009, nitrate (NO 3 ? ) leaching at the 50-cm soil depth was not related to fertilization rate, but there was a significant increase in NO 3 ? leaching between the 0 and 120?kg?N?ha?1 treatments in 2010 (8.9 and 28.9?kg?NO3?CN?ha?1?year?1, respectively). Overall, N fertilization of M. × giganteus led to N2O releases, increased fluxes of inorganic N (primarily NO 3 ? ) through the soil profile; and increased harvested N without a significant increase in biomass production.  相似文献   

3.
Guaranteeing high crop yields while reducing environmental impacts of nitrogen fertilizer use due to associated losses of N2O emissions and nitrate (NO3 ?) leaching is a key challenge in the context of sustainable intensification of crop production. However, few field data sets are available that explore the effect of different forms of N management on yields as well as on N losses in the form of N2O or NO3 ?. Here we report on a large-scale field lysimeter (8 × 4 m2) experiment, which was designed to determine soil CH4 and N2O emissions, NO3 ? leaching losses and crop yields from a subtropical rain-fed wheat–maize rotation in the Sichuan Basin, one of the most intensively used agricultural regions in China. One control and three different fertilizer treatments with the same total rate of N application (280 kg N ha?1 y?1) were included: NF: control (no fertilizer); NPK: synthetic N fertilizer; OMNPK: synthetic N fertilizer plus pig manure; RSDNPK: synthetic N fertilizer plus crop residues. As compared to the standard NPK treatment, annual NO3 ? leaching losses for OMNPK and RSDNPK treatments were decreased by 36 and 22%, respectively (P < 0.05). Similarly, crop yield-scaled NO3 ? leaching for NPK treatment was higher than those for either OMNPK or RSDNPK treatments (P < 0.05). Direct N2O emissions for RSDNPK treatment were decreased as compared with NPK and OMNPK treatments (P < 0.05). Furthermore, the yield-scaled GWP (global warming potential) was lower for the treatments where either pig manure or crop residues were incorporated as compared to the standard NPK treatment (P < 0.05). Our study indicates that it is possible to reduce the negative environmental impact of NO3 ? leaching and N2O emissions without compromising crop productivity. Yield-scaled NO3 ? leaching, similar to the yield-scaled GWP, represents another valuable-integrated metric to address the dual goals of reducing nitrogen pollution and maintaining crop grain yield for a given agricultural system.  相似文献   

4.
Insam  H.  Palojärvi  A. 《Plant and Soil》1995,168(1):75-81
Several boreal and alpine forests are depleted in nutrients due to acidification. Fertilization may be a remedy, but rapidly-soluble salts (N, P, K, Mg) may pose nitrate problems for the groundwater or decrease microbial activity.With the aim to investigate potential nitrogen leaching after fertilization we set up an experiment employing intact soil cores (11 cm diameter, 20–40 cm long) from a mixed forest and a Picea abies stand (soil type Rendsina) in the Northern Calcareous Alps of Austria. The cores were fertilized with a commercial NPK fertilizer or a methylene-urea-apatite-biotite (MuAB) fertilizer at a rate corresponding to 300 kg N ha-1 and incubated for 28 weeks together with unfertilized controls. Both soil water (retrieved 5 cm below the soil surface) and leachate were analyzed for nitrate and ammonium in regular intervals. After the incubation, soil microbial biomass and basal repiration were determined and a nitrogen mineralization assay was performed.For the control, in the soil water and leachate maximum NH4 + and NO3 - concentrations of 5 and 11 mg N L-1, respectively, were found. Compared to that, MuAB fertilizer resulted in a slow increase of NH4 + and NO3 - in the soil water (up to 11 and 35 mg N L-1 respectively) and in the leachate (4 mg NH4 +-N L-1 and 44 mg NO3 --N L-1). Highest nitrogen loads were found for the fast release NPK fertilizer, with NH4 + and NO3 - concentrations up to 170 and 270 mg N L-1, respectively, in the soil water. NH4 +-N levels in the leachate remained below 5, while NO3-N levels were up to 190 mg L-1. Fast- release NPK caused a significant decrease of microbial biomass and basal respiration. These parameters were not affected by MuAB fertilizer.The results suggest that the MuAB fertilizer may be an ecologically appropriate alternative to fast-release mineral fertilizers for improving forest soils.  相似文献   

5.

Background and aims

It is so far a gap in knowledge to assess nitrate (NO3 ?) leaching loss linking with crop yield for a given cereal cropping system.

Methods

We conducted a meta-analysis on 32 published studies reporting both NO3 ? leaching losses and crop yields in the maize (N?=?20) and wheat (N?=?12) systems.

Results

On average, 22 % and 15 % of applied fertilizer N to wheat and maize systems worldwide are leached in the form of NO3 ?, respectively. The average area-scaled NO3 - leaching loss for maize (57.4 kg N ha?1) was approx. two times higher than for wheat (29.0 kg N ha?1). While, if scaled to crop yields, the average yield-scaled NO3 ? losses were comparable between maize (5.40 kg N Mg?1) and wheat (5.41 kg N Mg?1) systems. Across all sites, the lowest yield-scaled NO3 ? leaching losses were observed at slightly suboptimal fertilization rates, corresponding to 90 % and 96 % of maximum maize or wheat yields, respectively.

Conclusions

Our findings suggest that small adjustments of agricultural N management practices can effectively reduce yield-scaled NO3 ? leaching losses. However, further targeted field experiments are still needed to identify at regional scale best agricultural management practices for reducing yield-scaled NO3 ? leaching losses in maize and wheat systems.  相似文献   

6.
Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3-) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha-1 in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3- concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.  相似文献   

7.
S.K. Tripathi 《农业工程》2009,29(2):130-135
Nitrogen (N) cycles through air, water and soil and plays an important role in the synthesis of complex N compounds in all forms of life on the planet earth by combining with carbon, hydrogen and oxygen (O). Besides, natural fixation of N by microorganisms, advertent and inadvertent fixation of N by human activities (e.g. landscape transformations, fossil fuel burning and use of N in agricultural fields) are altering the global cycle of N. As a result of human activities, N enters in water bodies (e.g. streams, estuaries and coastal regions) making them hostile for aquatic life and contaminates ground water (used for drinking) through nitrate (NO3-) leaching which causes a number of health problems to human beings and animals. Hence, reduction in level of NO3- in water bodies and ground water is a prerequisite that can be met through sustainable management of natural and modified ecosystems. More specifically, agricultural management practices need to be better designed to synchronize the availability of NO3- with that of the crop N demand. These management goals can be achieved by thorough understanding of the origin and fate of N, by using isotopic analysis of N and O in NO3-, which can provide the best management options for N in the environment. Overall, an integrated approach would be required to limit N production/use and release to prevent critical environmental limit being exceeded.  相似文献   

8.
Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high‐resolution (12 km) dynamically downscaled climate projections for 1995–2004 and 2085–2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems.  相似文献   

9.
The frequency and intensity of extreme weather years, characterized by abnormal precipitation and temperature, are increasing. In isolation, these years have disproportionately large effects on environmental N losses. However, the sequence of extreme weather years (e.g., wet–dry vs. dry–wet) may affect cumulative N losses. We calibrated and validated the DAYCENT ecosystem process model with a comprehensive set of biogeophysical measurements from a corn–soybean rotation managed at three N fertilizer inputs with and without a winter cover crop in Iowa, USA. Our objectives were to determine: (i) how 2‐year sequences of extreme weather affect 2‐year cumulative N losses across the crop rotation, and (ii) if N fertilizer management and the inclusion of a winter cover crop between corn and soybean mitigate the effect of extreme weather on N losses. Using historical weather (1951–2013), we created nine 2‐year scenarios with all possible combinations of the driest (“dry”), wettest (“wet”), and average (“normal”) weather years. We analyzed the effects of these scenarios following several consecutive years of relatively normal weather. Compared with the normal–normal 2‐year weather scenario, 2‐year extreme weather scenarios affected 2‐year cumulative NO3? leaching (range: ?93 to +290%) more than N2O emissions (range: ?49 to +18%). The 2‐year weather scenarios had nonadditive effects on N losses: compared with the normal–normal scenario, the dry–wet sequence decreased 2‐year cumulative N2O emissions while the wet–dry sequence increased 2‐year cumulative N2O emissions. Although dry weather decreased NO3? leaching and N2O emissions in isolation, 2‐year cumulative N losses from the wet–dry scenario were greater than the dry–wet scenario. Cover crops reduced the effects of extreme weather on NO3? leaching but had a lesser effect on N2O emissions. As the frequency of extreme weather is expected to increase, these data suggest that the sequence of interannual weather patterns can be used to develop short‐term mitigation strategies that manipulate N fertilizer and crop rotation to maximize crop N uptake while reducing environmental N losses.  相似文献   

10.
为探索山东南四湖沿岸麦玉轮作区玉米季内减少土壤无机氮素淋溶和径流损失的施肥策略,降低其对湖区水质产生的潜在威胁,采用田间原位安装淋溶水采集器和地表水径流池收集水样结合室内分析不同形态氮含量的方法,研究了不同施肥模式下无机氮素淋溶和径流损失特征。结果表明:土壤淋溶水量及地表水径流量与降水呈显著正相关关系,其水量受秸秆类物质还田的影响;硝态氮(NO3--N)与铵态氮(NH4 -N)随地表水径流损失的浓度及总量均明显高于淋溶水,由径流方式损失的氮素占2/3以上,是氮素以水溶液形式流失的主要途径;淋溶和径流均以NO3--N损失为主(径流损失中NO3--N占总量的82.9%-90.8%,淋溶损失中NO3--N占63.5%-72.9%),地表径流水NO3--N浓度对水质有较大影响,但土壤淋溶水NO3--N浓度对地下水污染不构成威胁;农民习惯施肥处理在玉米整个生育期淋溶和径流氮损失最高。在保证玉米产量前提下,降低氮素流失造成湖区的污染,平衡施用氮磷钾肥、施用控释氮肥、有机替代无机和秸秆还田等措施均可在沿南四湖区农田使用。  相似文献   

11.
Summary Seven sites in two long-term fertility experiments progressing at PAU Farm Ludhiana were selected on the basis of fertilizer treatments they were receiving. Soil samples were obtained upto 225 cm depth at 15 cm interval and nitrate was estimated from them by phenol disulphonic acid method. In the first experiment, to each of the three sites, equal amount of N was applied. When phosphorus and potassium were added at the rate of 26.2 kg P/ha and 24.9 kg K/ha, there was little NO3 --N left in the profile for leaching, and where no P and K was added, lot of NO3 - was left in the profile unutilized. Graphs for P13K25 treatment were in between the two extremes. Perhaps by balanced fertilization roots become proportionately efficient absorbers and little amount of nutrients is left, which is not absorbed. In the second experiment, supply of NPK to all the three treatments was increased or decreased from the recommended dose in a proportionate manner. This resulted in a nitrate distribution pattern similar to that of control treatment where no N was applied and thus strengthened the case for balanced fertilization.  相似文献   

12.
Progress on reducing nutrient loss from annual croplands has been hampered by perceived conflicts between short‐term profitability and long‐term stewardship, but these may be overcome through strategic integration of perennial crops. Perennial biomass crops like switchgrass can mitigate nitrate‐nitrogen (NO3‐N) leaching, address bioenergy feedstock targets, and – as a lower‐cost management alternative to annual crops (i.e., corn, soybeans) – may also improve farm profitability. We analyzed publicly available environmental, agronomic, and economic data with two integrated models: a subfield agroecosystem management model, Landscape Environmental Assessment Framework (LEAF), and a process‐based biogeochemical model, DeNitrification‐DeComposition (DNDC). We constructed a factorial combination of profitability and NO3‐N leaching thresholds and simulated targeted switchgrass integration into corn/soybean cropland in the agricultural state of Iowa, USA. For each combination, we modeled (i) area converted to switchgrass, (ii) switchgrass biomass production, and (iii) NO3‐N leaching reduction. We spatially analyzed two scenarios: converting to switchgrass corn/soybean cropland losing >US$ 100 ha?1 and leaching >50 kg ha?1 (‘conservative’ scenario) or losing >US$ 0 ha?1 and leaching >20 kg ha?1 (‘nutrient reduction’ scenario). Compared to baseline, the ‘conservative’ scenario resulted in 12% of cropland converted to switchgrass, which produced 11 million Mg of biomass and reduced leached NO3‐N 18% statewide. The ‘nutrient reduction’ scenario converted 37% of cropland to switchgrass, producing 34 million Mg biomass and reducing leached NO3‐N 38% statewide. The opportunity to meet joint goals was greatest within watersheds with undulating topography and lower corn/soybean productivity. Our approach bridges the scales at which NO3‐N loss and profitability are usually considered, and is informed by both mechanistic and empirical understanding. Though approximated, our analysis supports development of farm‐level tools that can identify locations where both farm profitability and water quality improvement can be achieved through the strategic integration of perennial vegetation.  相似文献   

13.
Nitrogen (N) export from soils to streams and groundwater under the intensifying cropping schemes of the Pampas is modest compared to intensively cultivated basins of Europe and North America; however, a slow N enrichment of water resources has been suggested. We (1) analyzed the fate of fertilizer N and (2) evaluated the contribution of fertilizer and soil organic matter (SOM) to N leaching under the typical cropping conditions of the Pampas. Fertilizer N was applied as 15N-labeled ammonium sulfate to corn (in a corn/soybean rotation) sown under zero tillage in filled-in lysimeters containing two soils of different texture representative of the Pampean region (52 and 78 kg N ha-1, added to the silt loam and sandy loam soil, respectively). Total fertilizer recovery at corn harvest averaged 84 and 64% for the silt loam and sandy loam lysimeters, respectively. Most fertilizer N was removed with plant biomass (39%) or remained immobilized in the soil (29 and 15%, for the silt loam and sandy loam soil, respectively) whereas its loss through drainage was negligible (<0.01%). We presume that the unaccounted fertilizer N losses were related to volatilization and denitrification. Throughout the corn growing season, subsequent fallow and soybean crop, which took place during an exceptionally dry period, the fertilizer N immobilized in the organic pool remained stable, and N leaching was scarce (7.5 kg N ha-1), similar at both soils, and had a low contribution of fertilizer N (0–3.5%), implying that >96% of the leached N was derived from SOM mineralization. The inherent high SOM of Pampean soils and the favorable climatic conditions are likely to propitiate year-round production of nitrate, favoring its participation in crop nutrition and leaching. The presence of 15N in drainage water, however, suggests that fertilizer N leaching could become significant in situations with higher fertilization rates or more rainy seasons.  相似文献   

14.
Summary Soil nitrate profiles under seven treatments of an experiment on intercropping in row crops were studied at sowing and the after harvesting of different crops. The estimates of NO3 –N in these profiles indicate that intercropping in the row crops grown during the rainy season considerably reduced leaching loss of nitrates. Where the main crop receives the recommended fertilizer amount and the intercrop a small additional application, intercropping greatly reduced the amount of unutilized nitrates and hence their leaching beyong root zone.  相似文献   

15.
Nitrogen (N) fertilization potentially affects soil N mineralization and leaching, and can enhance NH3 volatilization, thus impacting crop production. A fertilizer experiment with five levels of N addition (0, 79, 147, 215 and 375 kg N ha-1) was performed in 2009 and 2010 in a maize field in Huanghuaihai region, China, where > 300 kg N ha-1 has been routinely applied to soil during maize growth period of 120 days. Responses of net N mineralization, inorganic N flux (0–10cm), NH3 volatilization, and maize yield to N fertilization were measured. During the growth period, net N mineralization and nitrification varied seasonally, with higher rates occurring in August and coinciding with the R1 stage of maize growth. Soil NO3 -N contributed to more than 60% of inorganic N flux during maize growth. Cumulative NH3 volatilization increased with N additions, with total NH3 volatilization during maize growth accounting for about 4% of added N. Relative to the control, mean maize yield in the fertilizer treatments increased by 17% and 20% in 2009 and 2010, respectively. However, grain yield, aboveground biomass, and plant N accumulation did not increase with added N at levels > 215 kg N ha-1. These results suggest that the current N rate of 300 kg N ha-1 is not only excessive, but also reduces fertilizer efficacy and may contribute to environmental problems such as global warming and eutrophication of ground water and streams.  相似文献   

16.
Radish is one of the major dry field crops in Asia commonly grown with plastic mulch and high rates of N fertilization, and potentially harming the environment due to N2O emissions and nitrate leaching. Despite the widespread use of plastic mulch, biogeochemical models so far do not yet consider impacts of mulch on soil environmental conditions and biogeochemistry. In this study, we adapted and successfully tested the LandscapeDNDC model against field data by simulating crop growth, C and N turnover and associated N2O emissions as well as nitrate leaching for radish cultivation with plastic mulch and in conjunction with different rates of N fertilization (465–765 kg N ha?1 year?1). Due to the sandy soil texture and monsoon climate, nitrate leaching with rates up to 350 kg N ha?1 year?1 was the dominant reason for overall low nitrogen use efficiency (32–43 %). Direct or indirect N2O emissions (calculated from simulated nitrate leaching rates and IPCC EFind = 0.0075) ranged between 2 and 3 kg N ha?1 year?1, thus contributing an equal amount to total field emissions of about 5 kg N ha?1 year?1. Based on our results, emission factors for direct N2O emissions ranged between 0.004 and 0.005. These values are only half of the IPCC default value (0.01), demonstrating the need of biogeochemical models for developing site and/or region specific EFs. Simulation results also revealed that changes in agricultural management by applying the fertilizer only to the rows would be an efficient mitigation strategy, effectively decreasing field nitrate leaching and N2O emissions by 50–60 %.  相似文献   

17.
Thomsen  Ingrid K.  Kjellerup  Viggo  Jensen  Bendt 《Plant and Soil》1997,197(2):233-239
Two animal slurries either labelled with 15N in the urine or in the faeces fraction, were produced by feeding a sheep with unlabelled and 15N-labelled hay and collecting faeces and urine separately. The slurries were applied (12 g total N -2) to a coarse sand and a sandy loam soil confined in lysimeters and growing spring barley (Hordeum vulgare L). Reference lysimeters without slurry were supplied with15 NH4 15NO3 corresponding to the inorganic N applied with the slurries (6 g N m-2). In the second year, all lysimeters received unlabelled mineral fertilizer (6 g N m-2) and grew spring barley. N harvested in the two crops (grain + straw) and the loss of nitrate by leaching were determined. 15N in the urine fraction was less available for crop uptake than mineral fertilizer 15N. The first barley crop on the sandy loam removed 49% of the 15N applied in mineral fertilizer and 36% of that applied with urine. The availability of fertilizer 15N (36%) and urine15 N (32%) differed less on the coarse sand. Of the15 N added with the faeces fraction, 12–14% was taken up by the barley crop on the two soils. N mineralized from faeces compensated for the reduced availability of urine N providing a similar or higher crop N uptake in manured lysimeters compared with mineral fertilized ones.About half of the total N uptake in the first crop originated from the N applied either as slurry or mineral fertilizer. The remaining N was derived from the soil N pool. Substantially smaller but similar proportions of15 N from faeces, urine and fertilizer were found in the second crop. The similar recoveries indicated a slow mineralization rate of the residual faeces N since more faeces was left in the soil after the first crop.More N was lost by leaching from manured lysimeters but as a percentage of N applied, losses were similar to those from mineral fertilizer. During the first and second winter, 3–5% and 1–3%, respectively, of the 15N in slurry and mineral fertilizer was leached as nitrate. Thus slurry N applied in spring just before sowing did not appear to be more prone to loss by nitrate leaching than N given in mineral fertilizer. Slurry N accounted for a higher proportion of the N leached, however, because more N was added in this treatment.  相似文献   

18.
全球气候变暖对陆地生态系统尤其是森林生态系统有着重要的影响,气温升高、辐射强迫的增强将显著改变森林生态系统的结构和功能.南方人工林作为我国森林的重要组成部分,对气候变化的响应日益强烈.为了探究未来气候情景下我国南方人工林对气候变化的响应,降低未来气候变化对人工林可能带来的损失,本研究采用3种最新的气候情景—典型浓度排放路径情景(RCP2.6情景、RCP4.5情景、RCP8.5情景)预估数据,应用生态系统过程模型PnET-Ⅱ和空间直观景观模型LANDIS-Ⅱ模拟2014—2094年间湖南省会同森林生态实验站磨哨实验林场森林的地表净初级生产力(ANPP)、物种建立可能性(SEP)和地上生物量的变化.结果表明: 不同森林类型的SEP和ANPP对气候变化的响应有明显的差异,各森林类型对气候变化的响应程度表现为: 对于SEP,在RCP2.6和RCP4.5情景下,人工针叶林>天然阔叶林>人工阔叶林;在RCP8.5情景下,天然阔叶林>人工阔叶林>人工针叶林.对于ANPP,在RCP2.6情景下,人工阔叶林>天然阔叶林>人工针叶林;在RCP4.5和RCP8.5情景下,天然阔叶林>人工阔叶林>人工针叶林.人工针叶林的地上生物量在2050年左右开始下降,天然阔叶林和人工阔叶林整体呈现上升趋势.2014—2094年,研究区地上总生物量在不同气候情景下增加幅度不同,RCP2.6情景下增加了68.2%,RCP4.5情景下增加了79.3%,RCP8.5情景下增加了72.6%.3种情景下的总地上生物量大小排序为: RCP4.5> RCP8.5> RCP2.6.我们认为,适当的增温将有助于未来研究区森林总地上生物量的积累,但过度的增温也可能会阻碍森林的生产和生态功能的持续发展.  相似文献   

19.
付鑫  王俊  张祺  戈小荣 《生态学报》2018,38(19):6912-6920
基于田间定位试验,研究了秸秆和地膜覆盖措施对旱作春玉米田土壤氮组分和作物产量的影响。试验包括无覆盖对照,秸秆覆盖和地膜覆盖3个处理,观测指标包括土壤全氮(STN)、颗粒有机氮(PON)、潜在可矿化氮(PNM)、微生物量氮(MBN)、硝态氮(NO_3~--N)、铵态氮(NH_4~+-N)含量及作物产量。结果表明:试验进行5到7年后,与对照相比,秸秆覆盖处理0—10 cm土层STN、PON、PNM、MBN和NO_3~--N含量3年平均分别提高了13.11%、64.29%、17.51%、16.94%和55.37%,10—20 cm土层STN、PON、MBN和NO_3~--N含量3年平均分别提高了5.93%、33.33%、15.78%和27.57%(P0.05)。而地膜覆盖处理0—10 cm和10—20 cm土层NO_3~--N的含量较对照分别提高了189.14%和135.75%(P0.05),其他氮组分与对照处理差异不显著。秸秆和地膜覆盖处理玉米产量较对照处理3年平均分别提高了6.90%和36.74%(P0.05)。玉米产量与0—20 cm土层NO_3~--N含量和NO_3~--N/STN值呈显著正相关关系。总的来看,秸秆覆盖能显著增加旱地土壤全氮和活性有机氮含量,促进氮素固定,但需注意作物生长后期补充氮肥以满足作物生长需要。而地膜覆盖能显著提高土壤氮素有效性和作物产量,但不利于土壤有机氮的固定,且表层土壤存在潜在氮淋失风险。  相似文献   

20.
Summary Four-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) saplings planted in pots with a sand and peat mix (11) were fertilized at the rate of 200 kg N/ha of (15NH2)2CO (U-15),15NH4NO3 (A-15) and NH4 15NO3(An-15). They were placed in a shadehouse and watered regularly to maintain soil moisture at field capacity over periods of one and two years. Quantity of15N in foliage generally increased from old to current growth, irrespective of the nitrogen source. Utilization of15N fertilizers by saplings after the first and second growing seasons following fertilization was greatest with nitrate labelled ammonium nitrate AN-15, and nearly equal for urea U-15 and ammonium labelled ammonium nitrate A-15. The soil immobilized more fertilizer nitrogen-15 from U-15 and A-15 than from AN-15. Data from the present study, in which leaching losses of fertilizer were minimized, demonstrated that in terms of nitrogen uptake by the saplings the nitrate fertilizer was superior to ammonium fertilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号