首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7902篇
  免费   617篇
  国内免费   3篇
  2021年   59篇
  2020年   68篇
  2019年   67篇
  2018年   75篇
  2017年   91篇
  2016年   147篇
  2015年   246篇
  2014年   285篇
  2013年   403篇
  2012年   454篇
  2011年   431篇
  2010年   337篇
  2009年   269篇
  2008年   433篇
  2007年   460篇
  2006年   437篇
  2005年   410篇
  2004年   433篇
  2003年   418篇
  2002年   437篇
  2001年   79篇
  2000年   65篇
  1999年   105篇
  1998年   113篇
  1997年   97篇
  1996年   78篇
  1995年   111篇
  1994年   109篇
  1993年   101篇
  1992年   87篇
  1991年   96篇
  1990年   64篇
  1989年   66篇
  1988年   63篇
  1987年   72篇
  1986年   55篇
  1985年   76篇
  1984年   88篇
  1983年   60篇
  1982年   89篇
  1981年   81篇
  1980年   66篇
  1979年   54篇
  1978年   52篇
  1977年   50篇
  1976年   40篇
  1975年   47篇
  1974年   41篇
  1973年   47篇
  1971年   37篇
排序方式: 共有8522条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Bedbugs     
  相似文献   
6.
Fish gene mapping studies have identified several syntenic groups showing conservation over more than 400 million years of vertebrate evolution. In particular, Xiphophorus linkage group IV has been identified as a homolog of human chromosomes 15 and 19. During mammalian evolution, loci coding for glucosephosphate isomerase, peptidase D, muscle creatine kinase, and several DNA repair genes (ERCC1, ERCC2, and XRCC1) appear as a conserved syntenic group on human chromosome 19. When X. clemenciae and X. milleri PstI endonuclease-digested genomic DNA was used in Southern analysis with a human ERCC2 DNA repair gene probe, a strongly cross-hybridizing restriction fragment length polymorphism was observed. Backcrosses to X. clemenciae from X. milleri × X. clemenciae F1 hybrids allowed tests for linkage of the ERCC2-like polymorphism to markers covering a large proportion of the genome. Statistically significant evidence for linkage was found only for ERCC2L1 and CKM (muscle creatine kinase), with a total of 41 parents and 2 recombinants (4.7% recombination, χ2 = 35.37, P < 0.001); no evidence for linkage to GPI and PEPD in linkage group IV was detected. The human chromosome 19 synteny of ERCC2 and CKM thus appears to be conserved in Xiphophorus, while other genes located nearby on human chromosome 19 are in a separate linkage group in this fish. If Xiphophorus gene arrangements prove to be primitive, human chromosome 19 may have arisen from chromosome fusion or translocation events at some point since divergence of mammals and fishes from a common ancestor.  相似文献   
7.
Spontaneous mutants of Rhizobium leguminosarum biovar viciae strain C1204b were selected for their ability to tolerate 0.2 M NaCl, a growth-inhibiting level of salt for the parental strain. Transposon-mediated salt-sensitive mutants of strain C1204b were screened for their inability to grow in 0.08 M NaCl. Quantitation of the free-amino acid pools in the mutants grown in NaCl revealed a dramatic increase in glutamine, serine, glutamate and proline, and to a lesser extent alanine and glycine in the salt-tolerant mutants in comparison with the parental strain exposed to NaCl; but only glutamate and proline increased in the salt-sensitive mutants under NaCl stress. Extracellular polysaccharide levels were quantitated for the salt-tolerant mutants and determined to be approximately two-fold higher than for the parental strain. Although the mutations that occurred in the NaCl-tolerant and NaCl-sensitive strains did not interfere with nodule formation, no nitrogenase activity could be observed in the NaCl tolerant mutants as evaluated by acetylene reduction.  相似文献   
8.
Temperate pastures are often managed with P fertilizers and N2-fixing legumes to maintain and increase pasture productivity which may lead to greater nitrous oxide (N2O) emissions and reduced methane (CH4) uptake. However, the diel and inter-daily variation in N2O and CH4 flux in pastures is poorly understood, especially in relation to key environmental drivers. We investigated the effect of pasture productivity, rainfall, and changing soil moisture and temperature upon short-term soil N2O and CH4 flux dynamics during spring in sheep grazed pasture systems in southeastern Australia. N2O and CH4 flux was measured continuously in a High P (23 kg P ha?1 yr?1) and No P pasture treatment and in a sheep camp area in a Low P (4 kg P ha?1 yr?1) pasture for a four week period in spring 2005 using an automated trace gas system. Although pasture productivity was three-fold greater in the High P than No P treatment, mean CH4 uptake was similar (?6.3?±?SE 0.3 to ?8.6?±?0.4 μg C m?2 hr?1) as were mean N2O emissions (6.5 to 7.9?±?0.8 μg N m?2 hr?1), although N2O flux in the No P pasture did not respond to changing soil water conditions. N2O emissions were greatest in the Low P sheep camp (12.4 μg?±?1.1 N m?2 hr?1) where there were also net CH4 emissions of 5.2?±?0.5 μg C m?2 hr?1. There were significant, but weak, relationships between soil water and N2O emissions, but not between soil water and CH4 flux. The diel temperature cycle strongly influenced CH4 and N2O emissions, but this was often masked by the confounding covariate effects of changing soil water content. There were no consistently significant differences in soil mineral N or gross N transformation rates, however, measurements of substrate induced respiration (SIR) indicated that soil microbial processes in the highly productive pasture are more N limited than P limited after >20 years of P fertilizer addition. Increased productivity, through P fertilizer and legume management, did not significantly increase N2O emissions, or reduce CH4 uptake, during this 4 week measurement period, but the lack of an N2O response to rainfall in the No P pasture suggests this may be evident over a longer measurement period. This study also suggests that small compacted and nutrient enriched areas of grazed pastures may contribute greatly to the overall N2O and CH4 trace gas balance.  相似文献   
9.
10.
Land plants are characterised by haplo-diploid life cycles, and developing ovules are the organs in which the haploid and diploid generations coexist. Recently it has been shown that hormones such as auxin and cytokinins play important roles in ovule development and patterning. The establishment and regulation of auxin levels in cells is predominantly determined by the activity of the auxin efflux carrier proteins PIN-FORMED (PIN). To study the roles of PIN1 and PIN3 during ovule development we have used mutant alleles of both genes and also perturbed PIN1 and PIN3 expression using micro-RNAs controlled by the ovule specific DEFH9 (DEFIFICENS Homologue 9) promoter. PIN1 down-regulation and pin1-5 mutation severely affect female gametophyte development since embryo sacs arrest at the mono- and/or bi-nuclear stages (FG1 and FG3 stage). PIN3 function is not required for ovule development in wild-type or PIN1-silenced plants. We show that sporophytically expressed PIN1 is required for megagametogenesis, suggesting that sporophytic auxin flux might control the early stages of female gametophyte development, although auxin response is not visible in developing embryo sacs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号