首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
Fingerprinting the circulating repertoire of antibodies from cancer patients   总被引:13,自引:0,他引:13  
Recognition of molecular diversity in disease is required for the development of targeted therapies. We have developed a screening method based on phage display to select peptides recognized by the repertoire of circulating tumor-associated antibodies. Here we isolated peptides recognized by antibodies purified from the serum of prostate cancer patients. We identified a consensus motif, NX(S/T)DK(S/T), that bound selectively to circulating antibodies from cancer patients over control antibodies from blood donors. We validated this motif by showing that positive serum reactivity to the peptide was specifically linked to disease progression and to shorter survival in a large patient population. Moreover, we identified the corresponding protein eliciting the immune response. Finally, we showed a strong and specific positive correlation between serum reactivity to the tumor antigen, development of metastatic androgen-independent disease, and shorter overall survival. Exploiting the differential humoral response to cancer through such an approach may identify molecular markers and targets for diagnostic and therapeutic intervention.  相似文献   

2.
Covalent attachment of polyethylene glycol, PEGylation, has been shown to prolong the half-life and enhance the pharmacodynamics of therapeutic proteins. Current methods for PEGylation, which rely on chemical conjugation through reactive groups on amino acids, often generate isoforms in which PEG is attached at sites that interfere with bioactivity. Here, we present a novel strategy for site-directed PEGylation using glycosyltransferases to attach PEG to O-glycans. The process involves enzymatic GalNAc glycosylation at specific serine and threonine residues in proteins expressed without glycosylation in Escherichia coli, followed by enzymatic transfer of sialic acid conjugated with PEG to the introduced GalNAc residues. The strategy was applied to three therapeutic polypeptides, granulocyte colony stimulating factor (G-CSF), interferon-alpha2b (IFN-alpha2b), and granulocyte/macrophage colony stimulating factor (GM-CSF), which are currently in clinical use.  相似文献   

3.
To expand the applications of poly(ethylene glycol) (PEG)-protein conjugates for clinical use, we have developed a novel method for dual and site-specific incorporations of PEG derivatives into proteins using a substrate peptide (AQQIVM, named TG2) and transglutaminase (TGase). In our previous studies, TG2 was shown to be a special peptide with two adjacent Gln substrates for guinea pig liver transglutaminase (G-TGase). We have now constructed a chimeric protein (named rTG2-IL-2) of human interleukin-2 (IL-2), in which TG2 was fused to the N-terminus of IL-2. For the G-TGase-catalyzed reaction, rTG2-IL-2 was dually and site-specifically modified with alkylamine derivatives of PEG (PEG10, average M(r) 10 kDa) at both the Gln2 and Gln3 residues in the appended tag. To demonstrate the effectiveness of the G-TGase-catalyzed PEG-incorporation, we have compared the characteristics and the biological properties of PEG10-rTG2-IL-2 species with two PEG10 molecules attached to rTG2-IL-2 [(PEG10)(2)-rTG2-IL-2] with that of (PEG10)(2)-rhIL-2(R), in which PEG10 was randomly incorporated into rhIL-2 by a general procedure using a N-hydroxysuccinimidyl ester of PEG (PEG10-COOSu) (M(r) 10 kDa). (PEG10)(2)-rTG2-IL-2 was found to be superior in its in vitro bioactivities and equivalent in its pharmacokinetic profiles to (PEG10)(2)-rhIL-2(R). Unlike most previous methods, this approach can place dual PEG chains at designed sites on chimeric proteins without decreasing their bioactivities. Thus, TGase-catalyzed PEG-incorporation would improve the therapeutic utility of PEG-protein conjugates.  相似文献   

4.
Transforming growth factor beta (TGFβ(1)) influences a host of cellular fates, including proliferation, migration, and differentiation. Due to its short half-life and cross reactivity with a variety of cells, clinical application of TGFβ(1) may benefit from a localized delivery strategy. Photoencapsulation of proteins in polymeric matrices offers such an opportunity; however, the reactions forming polymer networks often result in lowered protein bioactivity. Here, PEG-based gels formed from the chain polymerization of acrylated monomers were studied as a model system for TGFβ(1) delivery. Concentrations of acrylate group ranging from 0 to 50 mM and photopolymerization conditions were systematically altered to study their effects on TGFβ(1) bioactivity. In addition, two peptide sequences, WSHW (K(D) = 8.20 nM) and KRIWFIPRSSWY (K(D) = 10.41 nM), that exhibit binding affinity for TGFβ(1) were introduced into the monomer solution prior to encapsulation to determine if affinity binders would increase the activity and release of the encapsulated growth factor. The addition of affinity peptides enhanced the bioactivity of TGFβ(1) in vitro from 1.3- to 2.9-fold, compared to hydrogels with no peptide. Further, increasing the concentration of affinity peptides by a factor of 100-10000 relative to the TGFβ(1) concentration increased fractional recovery of the protein from PEG hydrogels.  相似文献   

5.
PEGylation is a successful approach to improve potency of a therapeutic protein. The improved therapeutic potency is mainly due to the steric shielding effect of PEG. However, the underlying mechanism of this effect on the protein is not well understood, especially on the protein interaction with its high molecular weight substrate or receptor. Here, experimental study and molecular dynamics simulation were used to provide molecular insight into the interaction between the PEGylated protein and its receptor. Staphylokinase (Sak), a therapeutic protein for coronary thrombolysis, was used as a model protein. Four PEGylated Saks were prepared by site-specific conjugation of 5 kDa/20 kDa PEG to N-terminus and C-terminus of Sak, respectively. Experimental study suggests that the native conformation of Sak is essentially not altered by PEGylation. In contrast, the bioactivity, the hydrodynamic volume and the molecular symmetric shape of the PEGylated Sak are altered and dependent on the PEG chain length and the PEGylation site. Molecular modeling of the PEGylated Saks suggests that the PEG chain remains highly flexible and can form a distinctive hydrated layer, thereby resulting in the steric shielding effect of PEG. Docking analyses indicate that the binding affinity of Sak to its receptor is dependent on the PEG chain length and the PEGylation site. Computational simulation results explain experimental data well. Our present study clarifies molecular details of PEG chain on protein surface and may be essential to the rational design, fabrication and clinical application of PEGylated proteins.  相似文献   

6.
We have investigated the transmembrane topology of the bovine heart mitochondrial porin by means of proteases and antibodies raised against the amino-terminal region of the protein. The antisera against the human N-terminus reacted with porin in Western blots of NaDodSO4-solubilized bovine heart mitochondria and with the membrane-bound porin in enzyme-linked immunosorbent assay (ELISA). The immunoreaction with mitochondria coated on microtiter wells showed that the amino-terminal region of the protein is not embedded in the lipid bilayer but is exposed to the cytosol. Back-titration of unreacted anti-N-terminal antibodies after their incubation with intact mitochondria demonstrated that the porin N-terminus is also exposed in "noncoated" mitochondria. No difference in antisera reactivity was observed between intact and broken mitochondria. Intact and broken mitochondria were subjected to proteolysis by specific proteases. The membrane-bound bovine heart porin was strongly resistant to proteolysis, but a few specific cleavage sites were observed. Staphylococcus aureus V8 protease gave a large 24K N-terminal peptide, trypsin produced a 12K N-terminal and an 18K C-terminal peptide, and chymotrypsin gave two peptides of Mr 19.5K and 12.5K, which were both recognized by the antiserum against the human N-terminus. Carboxypeptidase A was ineffective in cleaving the membrane-bound porin in both intact and broken mitochondria. Thus, the carboxy-terminal part of the protein is probably not exposed to the water phase. The cleavage patterns of membrane-bound porin, obtained with S. aureus V8 protease, trypsin, and chymotrypsin, showed no difference between intact and broken mitochondria, thus indicating that all porin molecules have the same orientation in the membrane. The computer analysis of the sequence of human B-lymphocyte porin suggested that 16 beta-strands can span the phospholipid bilayer. This result, together with the overall information presented, allowed us to draw a possible scheme of the transmembrane arrangement of mammalian mitochondrial porin.  相似文献   

7.
The CC chemokine, MCP-1, has been identified as a major chemoattractant for T cells and monocytes, and plays a significant role in the pathology of inflammatory diseases. To identify the regions of MCP-1 that contact its receptor, CCR2, we substituted all surface-exposed residues with alanine. Some residues were also mutated to other amino acids to identify the importance of charge, hydrophobicity, or aromaticity at specific positions. The binding affinity of each mutant for CCR2 was assayed with THP-1 and CCR2-transfected CHL cells. The majority of point mutations had no effect. Residues at the N-terminus of the protein, known to be crucial for signaling, contribute less than a factor of 10 to the binding affinity. However, two clusters of primarily basic residues (R24, K35, K38, K49, and Y13), separated by a 35 A hydrophobic groove, reduced the level of binding by 15-100-fold. A peptide fragment encompassing residues 13-35 recapitulated some of the mutational data derived from the intact protein. It exhibited modest binding as a linear peptide and dramatically improved affinity when the region which adopts a single turn of a 3(10)-helix in the protein, which includes R24, was constrained by a disulfide bond. Additional constraints at the ends of the peptide, corresponding to the disulfide between the first and third cysteines in MCP-1, yielded further improvements in affinity. Together, these data suggest a model in which a large surface area of MCP-1 contacts the receptor, and the accumulation of a number of weak interactions results in the 35 pM affinity observed for the wild-type (WT) protein. The receptor binding site of MCP-1 also is significantly different from the binding sites of RANTES and IL-8, providing insight into the issue of receptor specificity. It was previously shown that the N-terminus of CCR2 is critical for binding MCP-1 [Monteclaro, F. S., and Charo, I. F. (1996) J. Biol. Chem. 271, 19084-92; Monteclaro, F. S., and Charo, I. F. (1997) J. Biol. Chem. 272, 23186-90]. Point mutations of six acidic residues in this region of the receptor were made to test their role in ligand binding. This identified D25 and D27 of the DYDY motif as being important. On the basis of our data, we propose a model in which the receptor N-terminus lies along the hydrophobic groove in an extended fashion, placing the DYDY motif near the basic cluster involving R24 and K49 of MCP-1. This in turn orients the signaling residues (Y13 and the N-terminus) for productive interaction with the receptor.  相似文献   

8.
PEGylation can improve the therapeutic efficacy of proteins by increasing serum half-life of proteins and reducing immunogenicity and antigenicity. However, PEGylation results in a substantial loss of the bioactivity of proteins due to the steric hindrance of polyethylene glycol (PEG). Dimerization of the proteins is an efficient approach to increase the bioactivity of the PEG-protein conjugates. Here, staphylokinase (SAK) was used due to its therapeutic potential for coronary thrombolysis. SAK dimers (dSAK) were prepared by engineering cysteine residue at the C-terminus of SAK and dimerization of the cysteine residue with 1,4-bismaleimidobutane. PEG aldehyde was used for site-specific PEGylation of dSAK at one of its two N-termini. Structural analysis indicated that dimerization of SAK can decrease the steric hindrance of PEG and increase the binding affinity of PEG-SAK to plasminogen. Dimerization of SAK increased the relative bioactivity of PEG-SAK from 39.0% to 62.0%. Therefore, site-specifically PEGylated dSAK at one of its two N-termini has higher bioactivity than the N-terminal PEGylated SAK.  相似文献   

9.
Recently, we created a lysine-deficient mutant tumor necrosis factor-alpha [mTNF-alpha-Lys(-)] with full bioactivity in vitro compared with wild-type TNF-alpha (wTNF-alpha), and site-specific PEGylation of mTNF-alpha-Lys(-) was found to selectively enhance its in vivo antitumor activity. In this study, we attempted to optimize this PEGylation of mTNF-alpha-Lys(-) to further improve its therapeutic potency. mTNF-alpha-Lys(-) was site-specifically modified at its N-terminus with linear polyethylene glycol (LPEG) or branched PEG (BPEG). While randomly mono-PEGylated wTNF-alpha (ran-LPEG5K-wTNF-alpha) with 5 kDa of LPEG (LPEG5K) had about only 4% in vitro bioactivity of wTNF-alpha, mono-PEGylated mTNF-alpha-Lys(-) [sp-PEG-mTNF-alpha-Lys(-)] with LPEG5K, LPEG20K, BPEG10K, and BPEG40K had 82%, 58%, 93%, and 65% bioactivities of mTNF-alpha-Lys(-), respectively. sp-LPEG-mTNF-alpha-Lys(-) and sp-BPEG10K-mTNF-alpha-Lys(-) had much superior antitumor activity to those of both unmodified TNF-alphas and ran-LPEG5K-wTNF-alpha, though sp-BPEG40K-mTNF-alpha-Lys(-) did not show in vivo antitumor activity. Thus, the molecular shape and weight of PEG may strongly influence the in vivo antitumor activity of sp-PEG-mTNF-alpha-Lys(-).  相似文献   

10.
Five adherence-inhibiting monoclonal antibodies (mAbs) were used for topological mapping of the binding sites of the 169 kDa membrane-integrated adhesin of Mycoplasma pneumoniae. Antibody binding sites were characterized using overlapping synthetic octapeptides. Three regions of the protein seem to be involved in adherence: the N-terminal region [N-reg, epitopes beginning at amino acid (aa) 1 to aa 14 and aa 231 to aa 238, respectively]; a domain (D1) approximately in the middle of the molecule (beginning at aa 851 to aa 858 and aa 921 to aa 928); and a domain (D2) closer to the C-terminus (beginning at aa 1303 to aa 1310, aa 1391 to aa 1398 and aa 1407 to aa 1414). Each of the mAbs P1.26 and P1.62 reacted with two primary amino acid sequences. Both antibodies bound to the D1 region, but mAb P1.62 showed additional binding to a sequence (aa 231 to aa 238) near the N-terminus, and mAb P1.26 reacted with a second epitope in the D2 domain (aa 1303 to aa 1310). Such dual binding by the two antibodies suggests that in the native protein the epitopes are composed of two sequences which are located on two different sites of the molecule (D1/N-reg and D1/D2, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Catalytic antibodies are currently being investigated in order to understand their role under physio-pathological situations. To this end, the knowledge of structure–function relationships is of great interest. Recombinant scFv fragments are smaller and easier to genetically manipulate than whole antibodies, making them well suited for this kind of study. Nevertheless they are often described as proteins being laborious to produce. This paper describes a highly efficient method to produce large quantities of refolded soluble catalytic scFv. For the first time, the functionality of a refolded catalytic scFv displaying a β-lactamase activity has been validated by three approaches: (1) use of circular dichroism to ensure that the refolded had secondary structure consistent with a native scFv fold, (2) development of enzyme-linked immunosorbant assay and surface plasmon resonance (SPR) approaches for testing that the binding characteristics of an inhibitory peptide have been retained, and (3) proof of the subtle catalytic properties conservation through the development of a new sensitive catalytic assay using a fluorogenic substrate.  相似文献   

12.
Recombinant interferon-beta-1b (IFN-beta-1b) is used clinically in the treatment of multiple sclerosis. In common with many biological ligands, IFN-beta-1b exhibits a relatively short serum half-life, and bioavailability may be further diminished by neutralizing antibodies. While PEGylation is an approach commonly employed to increase the blood residency time of protein therapeutics, there is a further requisite for molecular engineering approaches to also address the stability, solubility, aggregation, immunogenicity and in vivo exposure of therapeutic proteins. We investigated these five parameters of recombinant human IFN-beta-1b in over 20 site-selective mono-PEGylated or multi-PEGylated IFN-beta-1b bioconjugates. Primary amines were modified by single or multiple attachments of poly(ethylene glycol), either site-specifically at the N-terminus, or randomly on the 11 lysines. In two alternate approaches, site-directed mutagenesis was independently employed in the construction of designed IFN-beta-1b variants containing either a single free cysteine or lysine for site-specific PEGylation. Optimization of conjugate preparation with 12 kDa, 20 kDa, 30 kDa, and 40 kDa amine-selective PEG polymers was achieved, and a comparison of the structural and functional properties of the IFN-beta-1b proteins and their PEGylated counterparts was conducted. Peptide mapping and MALDI-TOF mass spectrometric analysis confirmed the attachment sites of the PEG polymer. Independent biochemical and bioactivity analyses, including antiviral and antiproliferation bioassays, circular dichroism, capillary electrophoresis, flow cytometric profiling, reversed phase and size exclusion HPLC, and immunoassays demonstrated that the functional activities of the designed IFN-beta-1b conjugates were maintained, while the formation of soluble or insoluble aggregates of IFN-beta-1b was ameliorated. Immunogenicity and pharmacokinetic studies of selected PEGylated IFN-beta-1b compounds in mice and rats demonstrated both diminished IgG responses, and over 100-fold expanded AUC exposure relative to the unmodified protein. The results demonstrate the capacity of this macromolecular engineering strategy to address both pharmacological and formulation challenges for a highly hydrophobic, aggregation-prone protein. The properties of a lead mono-PEGylated candidate, 40 kDa PEG2-IFN-beta-1b, were further investigated in formulation optimization and biological studies.  相似文献   

13.
Recent studies provide a glimpse of future potential therapeutic applications of custom-designed zinc finger proteins in achieving highly specific genomic manipulation. Custom-design of zinc finger proteins with tailor-made specificity is currently limited by the availability of information on recognition helices for all possible DNA targets. However, recent advances suggest that a combination of design and selection method is best suited to identify custom zinc finger DNA-binding proteins for known genome target sites. Design of functionally self-contained zinc finger proteins can be achieved by (a) modular protein engineering and (b) computational prediction. Here, we explore the novel functionality obtained by engineered zinc finger proteins and the computational approaches for prediction of recognition helices of zinc finger proteins that can raise our ability to re-program zinc finger proteins with desired novel DNA-binding specificities.  相似文献   

14.
Zhang G  Han B  Lin X  Wu X  Yan H 《Journal of biochemistry》2008,144(6):781-788
PEGylation of peptide drugs prolongs their circulating lifetimes in plasma. However, PEGylation can produce a decrease in the in vitro bioactivity. Longer poly(ethylene glycol) (PEG) chains are favourable for circulating lifetimes but unfavourable for in vitro bioactivities. In order to circumvent the conflicting effects of PEG length, a hydrophobic peptide, using an antimicrobial peptide as a model, was PEGylated with short PEG chains. The PEGylated peptides self-assembled in aqueous solution into micelles with PEG shell and peptide core. In these micelles, the core peptides were protected by the shell, thus reducing proteolytic degradation. Meanwhile, most of the in vitro antimicrobial activities still remained due to the short PEG chain attached. The stabilities of the PEGylated peptides were much higher than that of the unPEGylated peptides in the presence of chymotrypsin and serum. The antimicrobial activities of the PEGylated peptides in the presence of serum, an ex vivo assay, were much higher than that of the unPEGylated peptide.  相似文献   

15.
In this report, we describe plasmids that direct the expression of active mouse interleukin 2 (mIL 2) in Escherichia coli, and the use of this expression system to perform a mutational analysis of the N-terminal region of the mIL 2 protein. We found that the N-terminus was tolerant to the addition of a few amino acids, and even the addition of 20 amino acids resulted in only a modest decrease in activity of the protein. The bioactivity of mIL 2 as defined by its ability to sustain the proliferation of cloned T cells was also only minimally affected by deletion of up to 13 N-terminal amino acids, or of the entire poly-GLN stretch (amino acids 15-26). Deletion of the 30 N-terminal amino acids drastically reduced but did not abolish activity. Deletion of the 41 N-terminal amino acids completely abolished activity, whereas certain changes in the initial 37 amino acids drastically reduced the biological activity of the protein. We also analyzed the immunoreactivity of the mutant proteins with the anti-IL 2 monoclonal antibodies S4B6 and DMS-1. This analysis showed that the determinant recognized by S4B6 required that the N-terminal mIL 2 amino acids 26-45 be intact, whereas the DMS-1 determinant was located to the C-terminal side of amino acid 46.  相似文献   

16.
Aequorin fusion proteins have been used extensively in intracellular Ca2+ measurements and in the development of binding assays. Gene fusions to aequorin for production of fusion proteins have been so far limited to its N-terminus, as previous studies have indicated that aequorin loses its activity upon modification of its C-terminus. To further investigate this, two model peptides, an octapeptide (DTLDDDDL), and leu-enkephalin (TGGFL), an opioid peptide, were fused to the C-terminus of a cysteine-free mutant of aequorin through genetic engineering. The octapeptide was also fused to the N-terminus of the aequorin-leu-enkephalin fusion protein, which enables its affinity purification. Contrary to reports of earlier studies, we found that aequorin retains its bioluminescence activity after modification of the C-terminus. The half-life of light emission and the calibration curves obtained with the fusion proteins were comparable to those of the cysteine-free mutant of aequorin. Dose-response curves for the octapeptide were generated using two aequorin-octapeptide fusion proteins with the octapeptide fused to the N-terminus in one case, and to the C-terminus in the other. Similar detection limits for the octapeptide were obtained using both fusion proteins. The C-terminal fusion system has advantages in cases where antibodies recognize only the C-terminus of the peptide, as well as in cases where the functionality of the peptide lies in its C-terminus. The purification is also simplified as the affinity tag can be engineered at one terminus and the peptide of interest at the other.  相似文献   

17.
《Process Biochemistry》2014,49(7):1092-1096
PEGylation can effectively improve the therapeutic potential of staphylokinase (SAK), a thrombolysis agent for therapy of myocardial infarction. However, polyethylene glycol (PEG) can sterically shield SAK and drastically decrease its bioactivity. In the present study, N-terminally PEGylated SAKs (5 and 20 kDa PEG), C-terminally PEGylated SAKs with phenyl linker and the ones with amyl linker (5 and 20 kDa PEG) were prepared. The effects of the PEG length, the PEGylation site and linker chemistry on the bioactivity of the heat-treated PEGylated SAK were investigated. Heat treatment at 70 °C for 2 h can improve the bioactivity of the C-terminally PEGylated SAKs, where the one with amyl linker and 20 kDa PEG showed the highest increase extent (27%) in the bioactivity. Thus, our study can advance the development of long-acting pharmaceutical protein with high bioactivity.  相似文献   

18.
'Solid-phase' PEGylation, in which a conjugation reaction attaches proteins to a solid matrix, has distinct advantages over the conventional, solution-phase process. We report a case study in which recombinant interferon (rhIFN) alpha-2a was adsorbed to a cation-exchange resin and PEGylated at the N-terminus by 5, 10, and 20 kDa mPEG aldehydes through reductive alkylation. After PEGylation, a salt gradient elution efficiently purified the mono-PEGylate of unwanted species such as unmodified IFN and unreacted PEG. Mono-PEGylation and purification were integrated into a single, chromatographic step. Depending on the molecular weight of the mPEG aldehyde, the mono-PEGylation yield ranged from 50 to 65%. Major problems associated with the solution-phase process such as random or uncontrollable multi-PEGylation and post-PEGylation purification difficulties were overcome. N-terminus sequencing and MALDI-TOF mass spectrophometry confirmed that the PEG molecule was conjugated only to the N-terminus. A cell proliferation study indicated reduced antiviral activity of the mono-PEGylate compared to that of the unmodified IFN. As higher molecular weight PEG was conjugated, in vitro bioactivity and antibody binding activity, as measured by a surface plasmon resonance biosensor, decreased. Nevertheless, trypsin resistance and thermal stability were considerably improved .  相似文献   

19.
20.
Neuromedin U (NMU) is a neuropeptide found in the brain and gastrointestinal tract. The NMU system has been shown to regulate energy homeostasis by both a central and a peripheral mechanism. Peripheral administration of human NMU-25 was recently shown to inhibit food intake in mice. We examined the possibility that other NMU-related peptides exert an anorectic activity by intraperitoneal (i.p.) administration. We found that rat NMU-23 and its structurally-related peptide rat neuromedin S (NMS) significantly reduced food intake in lean mice, whereas NMU-8, an active fragment of the octapeptide sequence conserved in porcine, human and mouse NMU, had no effect. When rat NMU-23, NMU-8, and rat NMS were covalently conjugated to polyethylene glycol (PEG) (PEGylation) at the N-terminus of these peptides, PEGylated NMU-8 showed the most long-lasting and robust anorectic activity. The exploration of the linker between NMU-8 and PEG using hetero-bifunctional chemical cross-linkers led to an identification of PEGylated NMU-8 analogs with higher affinity for NMU receptors and with more potent anorectic activity in lean mice. The PEGylated NMU-8 showed potent and robust anorectic activity and anti-obesity effect in diet-induced obesity (DIO) mice by once-daily subcutaneous (s.c.) administration. These results suggest that PEGylated NMU-8 has the therapeutic potential for treatment of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号