首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
核酸疫苗--一种新型疫苗   总被引:1,自引:0,他引:1  
核酸疫苗是指将含有编码某种抗原蛋白基因序列的质粒载体作为疫苗,直接导入动物细胞内,从而通过宿主细胞的转录系统合成抗原蛋白,诱导宿主产生对该抗原蛋白的免疫应答,达到免疫的目的.核酸疫苗又称为基因疫苗或裸DNA疫苗,这种免疫称为核酸免疫、基因免疫、DNA介导的免疫以及遗传免疫等.  相似文献   

2.
NY-ESO-1作为一种肿瘤抗原,具有较强的免疫抗原性,并且已成为肿瘤候选疫苗之一。但由于目前大多应用NY-ESO-1多肽以及蛋白质疫苗,其临床试验效果欠佳,亟需更为有效的NY-ESO-1抗原设计的肿瘤免疫治疗出现。该研究的目的是探索将NY-ESO-1与具有增强免疫效应的五种因子分别重组成嵌合蛋白抗原,使其更有效地被加工、转运和呈递,以期找到最佳的基因佐剂,增强NY-ESO-1作为肿瘤治疗性DNA疫苗的免疫效果。采用电脉冲体内细胞高效转入的方法对C57BL/6小鼠进行DNA免疫,发现用编码NY-ESO-1或连接有HSP70的嵌合体质粒免疫可诱导强烈的NY-ESO-1特异性Ig G1反应。NY-ESO-1连接泛素的质粒免疫小鼠主要诱导NY-ESO-1特异性Ig G2a反应,表明此基因佐剂诱导强的Th1免疫反应。与其他嵌合NY-ESO-1质粒免疫相比,NYESO-1连接泛素的质粒免疫小鼠,有效地保护小鼠对有NY-ESO-1表达的B16F10黑色素瘤细胞系的挑战作用,证明强的Th1免疫反应对预防和治疗肿瘤具有重要作用。去除调节性T细胞(regulatory T cells,Treg)可进一步增强泛素-NY-ESO-1嵌合DNA疫苗治疗黑色素瘤的作用。此外,Ub-NY-ESO-1质粒结合编码异源黑素瘤抗原GP100和TRP-2的质粒免疫可诱导对抗含有NY-ESO-1表达的B16F10黑色素瘤的协同抗肿瘤免疫疗效。该研究结果表明,编码泛素-NY-ESO-1嵌合抗原的质粒DNA疫苗或与编码其他相关黑色素瘤抗原的质粒的联合可能是有效的治疗黑色素瘤的疫苗。  相似文献   

3.
殷霄  王文  谭文杰  邓瑶  管洁  文波  陈红  阮力 《病毒学报》2011,27(1):44-49
为研发新型HCV DNA疫苗并探讨优化其免疫原性的策略,我们分析靶向树突状细胞(Dendritic cells,DC)的分子对HCV DNA疫苗免疫原性的影响。我们基于抗小鼠DC细胞表面分子DEC205/CD205的单克隆抗体DEC205的单链分子,构建可单独表达DEC205单链抗体或者与HCV非结构蛋白NS3融合表达的DNA表达质粒,并构建单独表达HCV非结构蛋白NS3的DNA表达质粒;经瞬时转染法鉴定HCV NS3及其与DEC205单链抗体融合蛋白的表达;随后采用注射结合电转的方式免疫Balb/C小鼠并研究各疫苗的体液(NS3特异性IgG抗体)与细胞免疫(IFN-γELISPOT)效果。结果表明:DEC205单链抗体基因与HCV NS3编码基因的融合可显著增强NS3特异的免疫应答;采用皮内注射加卡钳电极电转的方式可以产生最强的NS3特异性抗体和T细胞免疫反应。因此,通过DEC205单链抗体与HCV DNA疫苗靶抗原融合可明显增强免疫应答效果。该策略为HCV及其他类似病原的新型DNA疫苗研制提供重要依据。  相似文献   

4.
一类新型疫苗—核酸疫苗   总被引:1,自引:0,他引:1  
核酸疫苗是将编码某种抗原蛋白的外源基因(DNA或RNA)直接导入动物细胞内,并通过宿主细胞的转录系统合成抗原蛋白,诱导宿主产生对该抗原蛋白的免疫应答,以达到预防和治疗疾病的目的。因此,核酸疫苗又称基因疫苗或基因免疫。但目前研究最多的是DNA疫苗,由于其不需要任何化学载体,因此也称为裸DNA疫苗。1核酸疫苗的发现裸DNA疫苗最早是由沃尔夫(WOllf)等人于1990年在一次基因治疗的实验研究中意外发现的。他们用化学试剂处理小鼠骨骼肌细胞,以提高其摄入质粒DNA的能力。结果发现,未作任何处理的对照动物,其骨骼肌细胞也吸…  相似文献   

5.
本研究构建了IL15质粒以评估其对表达HIV-1gp160的DNA和腺病毒5型载体疫苗的免疫效果的影响。我们构建表达IL15的质粒pVR-IL15,将pVR-IL15联合pVR-HIVgp160初免Ad5-HIVgp160加强方式免疫BALB/c小鼠,用IFN-γELISPOT和ELISA等方法比较疫苗单独免疫组小鼠与疫苗加IL15佐剂组小鼠诱导的细胞免疫和体液免疫反应的强度。结果显示疫苗加IL15佐剂组小鼠诱导的细胞免疫反应和体液免疫反应比疫苗单独免疫组小鼠相均有显著增强。构建的IL15基因佐剂可以增强HIV DNA疫苗初免和腺病毒疫苗加强免疫策略的免疫效果。  相似文献   

6.
为研究鸭乙型肝炎病毒核心抗原( DHBcAg) 真核表达质粒的免疫原性, 分析DHBcAg DNA 疫苗诱导的体液免疫应答, 首先借助生物信息学方法对鸭乙型肝炎病毒( DHBV) Core 基因编码的氨基酸序列进行亲疏水性分析, 分别构建DHBcAg 全基因( E-DHBc263) 及去除疏水性序列的DHBcAg 片段( E-DHBc180) 的真核表达质粒, 间接免疫荧光检测结果显示可在COS7 细胞内表达。进一步构建原核表达质粒p-DHBc263 和p-DHBc180, 仅p-DHBc180 可表达蛋白, 纯化后作为酶联免疫吸附试验( ELISA) 包被抗原, 用于DHBcAb 的检测。分别用E-DHBc263 和E-DHBc180 免疫小鼠, 采用间接ELISA 检测DHBcAb。结果显示, E-DHBc180 可诱导免疫小鼠产生DHBcAb 免疫应答, 加强免疫后效价可达1∶100 ~1∶400。结果提示, E-DHBc180 可作为DHBcAg DNA 疫苗, 在DHBV 感染鸭模型中评价其效果。  相似文献   

7.
唐梦君  王红宁  周生  黄勇  柳萍 《微生物学报》2007,47(6):1055-1059
为了研制更加有效的IBV DNA疫苗,将IBV的S1基因和禽白介素2(IL-2)基因插入双顺反子表达载体pIRES-EGFP/DsRed中,构建能分别或同时表达S1基因和IL-2基因的pIRES-S1、pIRES-IL2、pIRES-S1/IL-2质粒。通过脂质体转染Vero细胞,利用RT-PCR及间接免疫荧光检测表达。将构建的质粒用脂质体包裹后,通过腿部肌肉多点注射免疫7日龄雏鸡,二免后两周用IBV肾型强毒进行攻毒。结果表明,pIRES-S1/IL-2在体外能够诱导Vero细胞表达S1蛋白和IL-2;pIRES-S1/IL-2和pIRES-S1 pIRES-IL2免疫雏鸡后均能促进外周血T淋巴细胞亚群数量和血清中特异性抗体水平的增加,能明显增强IBV DNA疫苗对同型强毒的攻击保护,但pIRES-S1/IL-2免疫组要优于pIRES-S1 pIRES-IL2混合免疫组及其它对照组,差异显著或极显著。以上结果表明禽IL-2能同时加强DNA疫苗的细胞免疫和体液免疫应答;但抗原基因和IL-2共表达DNA疫苗的免疫效果明显要优于混合注射的DNA疫苗。  相似文献   

8.
白介素12(interleukin 12,IL-12)主要和细胞免疫应答有关,是免疫过程中重要的调节因子。本研究探讨IL-12对编码巨细胞病毒(cytomegalovirus,CMV)即刻早期基因IE1的DNA疫苗的免疫增强作用。将CMVIE1质粒DNA单独或与编码IL-12的质粒DNA共同免疫小鼠,然后用致死量病毒攻击小鼠。通过检测小鼠体内诱导的细胞免疫应答、小鼠的存活率、体重丢失率、器官中的病毒滴度等来评价IL-12对疫苗免疫的佐剂效果。结果显示,与单独疫苗免疫组相比,IE1 DNA联合IL-12 DNA免疫组能够在小鼠体内诱导更高的细胞免疫应答水平,同时能够降低器官中的病毒滴度,显著提高保护率,从而更好地抵抗病毒攻击。实验证明,IL-12能够作为巨细胞病毒IE1 DNA疫苗的佐剂,提高免疫保护效果。  相似文献   

9.
为提高抗原表达质粒在重组伤寒沙门氏菌中的稳定性以增强重组伤寒沙门氏菌诱导的免疫应答 ,克隆鼠伤寒沙门氏菌pagC基因启动子 ,以其为转录调控元件构建HCV核心抗原表达质粒 ,转化到减毒鼠伤寒沙门氏菌中。体外培养时 ,Mg2 能够剂量依赖性抑制该重组菌表达HCV核心抗原。将该重组菌和组成性表达的重组菌分别口服接种BALB/c小鼠 ,观察质粒的稳定性和小鼠的免疫应答。结果表明 ,体内激活的pagC基因启动子能明显提高质粒在重组鼠伤寒沙门氏菌中的稳定性和增强重组菌诱导的体液和细胞免疫应答 ,这为发展高效免疫、成本低廉的口服丙肝疫苗提供了一个新思路  相似文献   

10.
近年来,DNA疫苗的研究进展迅速,已在多种病毒、细菌、寄生虫病、肿瘤、过敏性疾病及免疫病理性疾病的防治研究中取得了令人鼓舞的成果,进一步提高DNA疫苗的免疫效果是今后努力的方向。当前在这方面主要的策略有:构建真核表达载体时,选择合适的启动子;质粒基本骨架中插入免疫刺激序列(ISS)或选择具有免疫增强作用的载体;细胞因子基因与外源基因共表达或共接种以提高外源基因编码抗原诱导的免疫反应。此外,质粒DNA的接种剂量和途径也可影响免疫反应效果。  相似文献   

11.
DNA vaccines     
Within the last decade bacterial plasmids encoding foreign antigens have revolutionized vaccine design. Although no DNA vaccine has yet been approved for routine human or veterinary use, the potential of this vaccine modality has been demonstrated in experimental animal models. Plasmid DNA vaccination has shown efficacy against viral, bacterial and parasitic infections, modulated the effects of autoimmune and allergic diseases and induced control over cancer progression. With a better understanding of the basic immune mechanisms that govern induction of protective or curative immune responses, plasmid DNA vaccines and their mode of delivery are continuously being optimized. Because of the simplicity and versatility of these vaccines, various routes and modes of delivery are possible to engage the desired immune responses. These may be T or B effector cell responses able to eliminate infectious agents or transformed cells. DNA vaccines may also induce an immunoregulatory/modulatory or immunosuppressive (tolerizing) response that interferes with the differentiation, expansion or effector functions of B and T cells. In this sense a DNA vaccine may be thought of as a 'negative' vaccine. Pre-clinical and initial small-scale clinical trials have shown DNA vaccines in either of these modes to be safe and well tolerated. Although DNA vaccines induce significant immune responses in small animal trials their efficacy in humans has so far been less promising thus necessitating additional optimizations of this novel vaccine approach.  相似文献   

12.
ABSTRACT

We studied the effects of first generation HIV-1 plasmid vaccines in 167 individuals. The vaccines were very well tolerated and induced helper T cell responses in most vaccine recipients. However, the CTL responses were below a 20% response rate. Improvement in vaccine potency is an important goal of this technology and a central focus of our laboratory. To improve on these response rates, we used RNA optimized constructs pGag and pEnv). These vaccines express 20–100 fold better than first generation vectors. However, our studies support that additional enhancements are needed to further boost the immune response. We report that we can significantly enhance the induced CD8 effector cell response by including engineered B7 costimulatory molecules. We observed that B7.2 was more effective at driving cellular immune responses than B7.1 as a plasmid vaccine. We developed gene swaps and deletions between these two molecules. This manipulation resulted in a dramatically enhanced cellular immune response as measured by CTL, or ICC or Elispot. We have also explored the use of cytokines as plasmid vaccine adjuvants. We observed that IL-12 and IL-15 were effective as plasmid vaccine adjuvants. Interestingly, IL-15 appeared to allow T cell expansion in the absence of significant T cell help. Improvement of the immune response induced by plasmid vaccines can be engineered in multiple ways. Our studies show that both costimulation as well as cytokine signals can be harnessed for more potent vaccine development. These results have important implications for the design of vaccines for prophylaxis and therapy.  相似文献   

13.
BACKGROUND: DNA vaccines have been shown to be an effective approach to induce antigen-specific cellular and humoral immunity. However, the lower immune intensity in clinical trials limits the application of DNA vaccine. Here we intend to develop a new DNA vaccine based on prostate stem-cell antigen (PSCA), which has been suggested as a potential target for prostate cancer therapy, and enhance the DNA vaccine potency with heat shock proteins (HSPs) as adjuvant. METHODS: A series of DNA plasmids encoding human PSCA, human HSP70 and their conjugates was constructed and injected into male mice intramuscularly (i.m.). To evaluate the immune responses and therapeutic efficacy of these plasmids, major histocompatibility complex (MHC)-restricted PSCA and HSP70-specific epitopes were predicted and a mouse model with a human PSCA-expressing tumor was constructed. RESULTS: The result showed that mice vaccinated with PSCA-HSP plasmids generated the strongest PSCA-specific CD8+ T-cell immune response, but the CD4+ TH1 and TH2 cell immune responses were similar with those vaccinated with other HSP-adjuvant PSCA plasmids or only PSCA DNA. The immunity of HSP70 was also observed and the mice i.m. injected with PSCA+ HSP mixed plasmids generated the lowest anti-HSP antibodies. Furthermore, these vaccinations inhibited the growth of PSCA-expressing tumors and prolonged mouse survival. CONCLUSIONS: These observations emphasize and extend the potential of the human HSP70 gene as adjuvant for DNA vaccines, and the vaccine based on PSCA and HSP70 is of potential value for treating prostate cancer.  相似文献   

14.
Technical and regulatory hurdles for DNA vaccines   总被引:13,自引:0,他引:13  
DNA vaccines have been widely used in laboratory animals and non-human primates over the last decade to induce antibody and cellular immune responses. This approach has shown some promise, in models of infectious diseases of both bacterial and viral origin as well as in tumour models. Clinical trials have shown that DNA vaccines appear safe and well tolerated, but need to be made much more potent to be candidates for preventive immunisation of humans. This review describes recent work to improve the delivery of plasmid DNA vaccines and also to increase the immunogenicity of antigens expressed from the DNA vaccine plasmids, including various formulations and molecular adjuvants. Because DNA vaccines are relatively new and represent a novel vaccine technology, certain safety issues, such as the potential for induction of autoimmune disease and integration into the host genome, must be examined carefully. If potency can be improved and safety established, plasmid DNA vaccines offer advantages in speed, simplicity, and breadth of immune response that may be useful for the immunisation of humans against infectious diseases and cancers.  相似文献   

15.
DNA vaccines encoding a viral protein have been shown to induce antiviral immune responses and provide protection against subsequent viral challenge. In this study, we show that the efficacy of a DNA vaccine can be greatly improved by simultaneous expression of interleukin-2 (IL-2). Plasmid vectors encoding the major (S) or middle (pre-S2 plus S) envelope proteins of hepatitis B virus (HBV) were constructed and compared for their potential to induce hepatitis B surface antigen (HBsAg)-specific immune responses with a vector encoding the middle envelope and IL-2 fusion protein or with a bicistronic vector separately encoding the middle envelope protein and IL-2. Following transfection of cells in culture with these HBV plasmid vectors, we found that the encoded major protein was secreted while the middle protein and the fusion protein were retained on the cell membrane. Despite differences in localization of the encoded antigens, plasmids encoding the major or middle proteins gave similar antibody and T-cell proliferative responses in the vaccinated animals. The use of plasmids coexpressing IL-2 and the envelope protein in the fusion or nonfusion context resulted in enhanced humoral and cellular immune responses. In addition, the vaccine efficacy in terms of dosage used in immunization was increased at least 100-fold by coexpression of IL-2. We also found that DNA vaccines coexpressing IL-2 help overcome major histocompatibility complex-linked nonresponsiveness to HBsAg vaccination. The immune responses elicited by HBV DNA vaccines were also modulated by coexpression of IL-2. When restimulated with antigen in vitro, splenocytes from mice that received plasmids coexpressing IL-2 and the envelope protein produced much stronger T helper 1 (Th1)-like responses than did those from mice that had been given injections of plasmids encoding the envelope protein alone. Coexpression of IL-2 also increased the Th2-like responses, although the increment was much less significant.  相似文献   

16.
简单介绍目前疫苗效力检验的方法、黏膜抗体的功能及其在实验室疫苗效果效力评价中的应用,提出了黏膜抗体作为疫苗免疫效力试验的替代指标或免疫监测的主要抗体的建议。  相似文献   

17.
ABSTRACT: BACKGROUND: The use of optimized delivery devices has been shown to enhance the potency of DNA vaccines. However, further optimization of DNA vaccine delivery is needed for this vaccine modality to ultimately be efficacious in humans. METHODS: Herein we evaluated antigen expression and immunogenicity after intradermal delivery of different doses of DNA vaccines by needle or by the Biojector jet-injection device, with or without the addition of electroporation (EP). RESULTS: Neither needle injection augmented by EP nor Biojector alone could induce higher magnitudes of immune responses after immunizations with a high dose of a DNA vaccine as compared to immunizations with a considerably lower dose. Biojector delivery followed by EP, however, overcame this observed dose restriction and induced significantly higher cellular and humoral immune responses after immunization with a high dose of DNA. Furthermore, a close correlation between in vivo antigen expression and cell-mediated immune responses was observed. CONCLUSIONS: These results show that two optimized DNA vaccine delivery devices can act together to overcome dose restrictions of plasmid DNA vaccines.  相似文献   

18.
Summary Human papillomavirus (HPV) E6 and E7 are consistently expressed and are responsible for the malignant transformation of HPV-associated lesions. Thus, E6 and E7 represent ideal targets for therapeutic HPV vaccine development. We have previously used the gene gun approach to test several intracellular targeting and intercellular spreading strategies targeting HPV-16 E7. These strategies include the use of the sorting signal of lysosome-associated membrane protein (LAMP-1), Mycobacterium tuberculosis heat shock protein 70 (HSP70), calreticulin (CRT) and herpes simplex virus type 1 (HSV-1) VP22 proteins. All of these strategies have been shown to be capable of enhancing E7-DNA vaccine potency. In the current study, we have characterized DNA vaccines employing these intracellular targeting or intercellular spreading strategies targeting HPV-16 E6 for their ability to generate E6-specific CD8+ T cell immune responses and antitumor effects against an E6-expressing tumor cell line, TC-1, in C57BL/6 mice. We found that all the intracellular targeting strategies (CRT, LAMP-1, HSP70) as well as the intercellular spreading strategy (VP22) were able to enhance E6 DNA vaccine potency, although the orientation of HSP70 linked to E6 antigen in the E6 DNA vaccine appears to be important for the HSP70 strategy to work. The enhanced E6-specific CD8+ T cell immune response in vaccinated mice also translated into potent antitumor effects against TC-1 tumor cells. Our data indicate that all of the intracellular targeting and intercellular spreading strategies that have been shown to enhance E7 DNA vaccine potency were also able to enhance E6 DNA vaccine potency.  相似文献   

19.
不同DNA疫苗联合接种可有效增强免疫效果   总被引:10,自引:2,他引:8  
孟昕  阮力  魏博  刘文军  朱既明 《病毒学报》2000,16(3):212-218
造反乙型肝炎(乙肝)病毒核心抗原(HBcAgA)、e抗原(HBeAg)及单纯疱疹病毒gD抗原(HSV-1-gD)基因为目的基因,进行DNA疫苗联合免疫的研究。通过对不同基因片段的表达研究,选择了能在哺乳动物细胞中高效表达乙肝病毒核心抗原、e抗原和单纯疱疹病毒gD抗原的质粒DNA免疫Balb/c小鼠。结果显示:表达乙肝病毒核心抗原和单纯疱毒gD抗原的DHA疫苗单独免疫,能有效刺激机体产生体液免疫和细  相似文献   

20.
DNA vaccines have emerged as an attractive approach for generating antigen-specific immunotherapy. Strategies that enhance antigen presentation may potentially be used to enhance DNA vaccine potency. Previous experiments showed that chimeric DNA vaccines utilizing endoplasmic reticulum (ER) chaperone molecules, such as Calreticulin (CRT), linked to an antigen were capable of generating antigen-specific CD8+ T cell immune responses in vaccinated mice. In this study, we tested DNA vaccines encoding the ER chaperone molecules ER-60, tapasin (Tap), or calnexin (Cal), linked to human papillomavirus type 16 (HPV-16) E7 for their abilities to generate E7-specific T cell-mediated immune responses and antitumor effects in vaccinated mice. Our results demonstrated that vaccination with DNA encoding any of these chaperone molecules linked to E7 led to a significant increase in the frequency of E7-specific CD8+ T cell precursors and generated stronger antitumor effects against an E7-expressing tumor in vaccinated mice compared to vaccination with wild-type E7 DNA. Our data suggest that DNA vaccines employing these ER chaperone molecules linked to antigen may enhance antigen-specific CD8+ T cell immune responses, resulting in a significantly more potent DNA vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号