首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Xu B  Chen S  Luo Y  Chen Z  Liu L  Zhou H  Chen W  Shen T  Han X  Chen L  Huang S 《PloS one》2011,6(4):e19052
Cadmium (Cd), a toxic environmental contaminant, induces oxidative stress, leading to neurodegenerative disorders. Recently we have demonstrated that Cd induces neuronal apoptosis in part by activation of the mitogen-activated protein kineses (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains elusive. Here we show that Cd elevated intracellular calcium ion ([Ca2+](i)) level in PC12, SH-SY5Y cells and primary murine neurons. BAPTA/AM, an intracellular Ca2+ chelator, abolished Cd-induced [Ca2+](i) elevation, and blocked Cd activation of MAKPs including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38, and mTOR-mediated signaling pathways, as well as cell death. Pretreatment with the extracellular Ca2+ chelator EGTA also prevented Cd-induced [Ca2+](i) elevation, MAPK/mTOR activation, as well as cell death, suggesting that Cd-induced extracellular Ca2+ influx plays a critical role in contributing to neuronal apoptosis. In addition, calmodulin (CaM) antagonist trifluoperazine (TFP) or silencing CaM attenuated the effects of Cd on MAPK/mTOR activation and cell death. Furthermore, Cd-induced [Ca2+](i) elevation or CaM activation resulted in induction of reactive oxygen species (ROS). Pretreatment with BAPTA/AM, EGTA or TFP attenuated Cd-induced ROS and cleavage of caspase-3 in the neuronal cells. Our findings indicate that Cd elevates [Ca2+](i), which induces ROS and activates MAPK and mTOR pathways, leading to neuronal apoptosis. The results suggest that regulation of Cd-disrupted [Ca2+](i) homeostasis may be a new strategy for prevention of Cd-induced neurodegenerative diseases.  相似文献   

2.
Oxidative stress-induced neuronal apoptosis is a prominent feature found in neurodegenerative disorders. However, how oxidative stress induces neuronal apoptosis is not well understood. To address this question, undifferentiated and differentiated neuronal cell lines (PC12 and SH-SY5Y) were exposed to hydrogen peroxide (H2O2), a major oxidant generated when oxidative stress occurs. We observed that H2O2 induced generation of reactive oxygen species (ROS), leading to apoptosis of the cells in a concentration- and time-dependent manner. H2O2 rapidly activated the mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38. Inhibition of Erk1/2, JNK or p38 with kinase inhibitors (U0126, SP600125 or PD169316, respectively), downregulation of Erk1/2 or p38 using RNA interference, or expression of dominant negative c-Jun partially prevented H2O2-induced apoptosis. Pretreatment with N-acetyl-l-cysteine (NAC) scavenged H2O2-induced ROS, blocking activation of MAPKs and cell death. Furthermore, we found that H2O2-induced ROS inhibited serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5), which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented H2O2-activation of Erk/12, JNK and p38, as well as cell death. Similar results were observed in primary murine neurons as well. The results suggest that H2O2-induction of ROS inhibit PP2A and PP5, leading to activation of Erk1/2, JNK and p38 pathways thereby resulting in neuronal apoptosis. Our findings suggest that inhibitors of MAPKs (JNK, Erk1/2 and p38), activators of phosphatases (PP2A and PP5) or antioxidants may have potentials to prevent and treat oxidative stress-induced neurodegenerative diseases.  相似文献   

3.
Cadmium (Cd), a highly toxic environmental pollutant, induces neurodegenerative diseases. Recently we have demonstrated that Cd induces neuronal apoptosis in part through activation of the mammalian target of rapamycin (mTOR) pathway. However, the underlying mechanism is unknown. Here we show that Cd induces the generation of reactive oxygen species (ROS) by upregulating the expression of NADPH oxidase 2 and its regulatory proteins (p22(phox), p67(phox), p40(phox), p47(phox), and Rac1) in PC12 and SH-SY5Y cells. Cd induction of ROS contributed to the activation of mTOR signaling, as pretreatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, prevented this event. Further studies reveal that Cd induction of ROS increased phosphorylation of the type I insulin-like growth factor receptor (IGFR) β subunit, which was abrogated by NAC. Wortmannin, a phosphoinositide 3'-kinase (PI3K) inhibitor, partially attenuated Cd-induced phosphorylation of Akt, p70 S6 kinase 1, and eukaryotic initiation factor 4E-binding protein 1, as well as apoptosis of the neuronal cells. In addition, overexpression of wild-type phosphatase and tensin homologue deleted on chromosome 10 (PTEN) or pretreatment with aminoimidazole carboxamide ribonucleotide, an AMP-activated protein kinase (AMPK) activator, partially prevented Cd-induced ROS and activation of the mTOR pathway, as well as cell death. The results indicate that Cd induction of ROS activates mTOR signaling, leading to neuronal cell death, in part by activating the positive regulators IGFR/PI3K and by inhibiting the negative regulators PTEN/AMPK. The findings suggest that inhibitors of PI3K and mTOR, activators of AMPK, or antioxidants may be exploited for the prevention of Cd-induced neurodegenerative diseases.  相似文献   

4.
MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis   总被引:1,自引:0,他引:1  
Cadmium (Cd) may be accumulated in human body through long-term exposure to Cd-polluted environment, resulting in neurodegeneration and other diseases. To study the mechanism of Cd-induced neurodegeneration, PC12 and SH-SY5Y cells were exposed to Cd. We observed that Cd-induced apoptosis in the cells in a time- and concentration-dependent manner. Cd rapidly activated the mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase 1/2 (Erk1/2), c -Jun N-terminal kinase (JNK) and p38. Inhibition of Erk1/2 and JNK, but not p38, partially protected the cells from Cd-induced apoptosis. Consistently, over-expression of dominant negative c- Jun or down-regulation of Erk1/2, but not p38 MAPK, partially prevented Cd-induced apoptosis. To our surprise, Cd also activated mammalian target of rapamycin (mTOR)-mediated signaling pathways. Treatment with rapamycin, an mTOR inhibitor, blocked Cd-induced phosphorylation of S6K1 and eukaryotic initiation factor 4E binding protein 1, and markedly inhibited Cd-induced apoptosis. Down-regulation of mTOR by RNA interference also in part, rescued cells from Cd-induced death. These findings indicate that activation of the signaling network of MAPK and mTOR is associated with Cd-induced neuronal apoptosis. Our results strongly suggest that inhibitors of MAPK and mTOR may have a potential for prevention of Cd-induced neurodegeneration.  相似文献   

5.
The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition (IC50) of MCF-7 cells at 26.4% 0.7% M over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with 100 microM acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun NH4-terminal kinase 1/2 (SAPK/ JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.  相似文献   

6.
Cadmium (Cd), one of well-known highly toxic environmental and industrial pollutants, causes a number of adverse health effects and diseases in humans. The growing epidemiological studies have suggested a possible link between Cd exposure and diabetes mellitus (DM). However, the toxicological effects and underlying mechanisms of Cd-induced pancreatic β-cell injury are still unknown. In this study, we found that Cd significantly decreased cell viability, and increased sub-G1 hypodiploid cells and annexin V-Cy3 binding in pancreatic β-cell-derived RIN-m5F cells. Cd also increased intracellular reactive oxygen species (ROS) generation and malondialdehyde (MDA) production and induced mitochondrial dysfunction (the loss of mitochondrial membrane potential (MMP) and the increase of cytosolic cytochrome c release), the decreased Bcl-2 expression, increased p53 expression, poly (ADP-ribose) polymerase (PARP) cleavage, and caspase cascades, which accompanied with intracellular Cd accumulation. Pretreatment with the antioxidant N-acetylcysteine (NAC) effectively reversed these Cd-induced events. Furthermore, exposure to Cd induced the phosphorylations of c-jun N-terminal kinases (JNK), extracellular signal-regulated kinases (ERK)1/2, and p38-mitogen-activated protein kinase (MAPK), which was prevented by NAC. Additionally, the specific JNK inhibitor SP600125 or JNK-specific small interference RNA (si-RNA) transfection suppressed Cd-induced β-cell apoptosis and related signals, but not ERK1/2 and p38-MAPK inhibitors (PD98059 and SB203580) did not. However, the JNK inhibitor or JNK-specific si-RNA did not suppress ROS generation in Cd-treated cells. These results indicate that Cd induces pancreatic β-cell death via an oxidative stress downstream-mediated JNK activation-triggered mitochondria-regulated apoptotic pathway.  相似文献   

7.
The hierarchy of events accompanying induction of apoptosis by the microtubule inhibitor docetaxel was investigated in HL-60 human leukemia cells. Treatment of HL-60 cells with docetaxel resulted in the production of reactive oxygen species (ROS), activation of caspase-3 (-like) protease, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation, bcl-2 phosphorylation and apoptosis. Docetaxel elicited ROS production from NADPH oxidase as demonstrated by specific oxidase inhibitor diphenylene iodonium (DPI). ROS mediated the caspase-3 activation and apoptosis in HL-60 cells. The caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) effectively inhibited JNK/SAPK activation, bcl-2 phosphorylation and partially attenuated the ROS production induced by docetaxel. Docetaxel-induced bcl-2 phosphorylation was completely blocked by expression of dominant negative JNK or the JNK/SAPK inhibitor SP600125. Overexpression of bcl-2 partially prevented docetaxel-mediated ROS production and subsequent caspase-3 activation, thereby inhibiting apoptotic cell death. It is thus conferred that such sequent events as ROS production, caspase activation, JNK/SAPK activation, bcl-2 phosphorylation and the further generation of ROS should be parts of an amplification loop to increase caspase activity, thereby facilitating the apoptotic cell death process.  相似文献   

8.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

9.
Cadmium (Cd) is an extremely toxic metal capable of severely damaging several organs, including the brain. Studies have shown that Cd induces neuronal apoptosis partially by activating the mitogen-activated protein kinase (MAPK) pathways. However, the underlying mechanism of MAPK involving the mitochondrial apoptotic pathway in neurons remains unclear. In this study, primary rat cerebral cortical neurons were exposed to Cd, which significantly decreased cell viability and the B-cell lymphoma 2/Bcl-2 associate X protein (Bcl-2/Bax) ratio and increased the percentage of apoptotic cells, release of cytochrome c, cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP), and nuclear translocation of apoptosis-inducing factor (AIF). In addition, Cd induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2/Bax ratio, release of cytochrome c, cleavages of caspase-3 and PARP, and nuclear translocation of AIF. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathways play important roles in Cd-induced neuronal apoptosis.  相似文献   

10.
Previously we have shown that both Rac1 and c-Jun NH(2)-terminal kinase (JNK1/2) are key proapoptotic molecules in tumor necrosis factor (TNF)-alpha/cycloheximide (CHX)-induced apoptosis in intestinal epithelial cells, whereas the role of reactive oxygen species (ROS) in apoptosis is unclear. The present studies tested the hypothesis that Rac1-mediated ROS production is involved in TNF-alpha-induced apoptosis. In this study, we showed that TNF-alpha/CHX-induced ROS production and hydrogen peroxide (H(2)O(2))-induced oxidative stress increased apoptosis. Inhibition of Rac1 by a specific inhibitor NSC23766 prevented TNF-alpha-induced ROS production. The antioxidant, N-acetylcysteine (NAC), or rotenone (Rot), the mitochondrial electron transport chain inhibitor, attenuated mitochondrial ROS production and apoptosis. Rot also prevented JNK1/2 activation during apoptosis. Inhibition of Rac1 by expression of dominant negative Rac1 decreased TNF-alpha-induced mitochondrial ROS production. Moreover, TNF-alpha-induced cytosolic ROS production was inhibited by Rac1 inhibition, diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase), and NAC. In addition, DPI inhibited TNF-alpha-induced apoptosis as judged by morphological changes, DNA fragmentation, and JNK1/2 activation. Mitochondrial membrane potential change is Rac1 or cytosolic ROS dependent. Lastly, all ROS inhibitors inhibited caspase-3 activity. Thus these results indicate that TNF-alpha-induced apoptosis requires Rac1-dependent ROS production in intestinal epithelial cells.  相似文献   

11.
Chen S  Xu Y  Xu B  Guo M  Zhang Z  Liu L  Ma H  Chen Z  Luo Y  Huang S  Chen L 《Journal of neurochemistry》2011,119(5):1108-1118
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Recently, we have shown that Cd elevates intracellular free calcium ion ([Ca(2+) ](i) ) level, leading to neuronal apoptosis partly by activating mitogen-activated protein kinases (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains to be elucidated. In this study, we show that the effects of Cd-elevated [Ca(2+) ](i) on MAPK and mTOR network as well as neuronal cell death are through stimulating phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). This is supported by the findings that chelating intracellular Ca(2+) with 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or preventing Cd-induced [Ca(2+) ](i) elevation using 2-aminoethoxydiphenyl borate blocked Cd activation of CaMKII. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of MAPK/mTOR pathways and cell death. Furthermore, inhibitors of mTOR (rapamycin), c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated kinase 1/2 (U0126), but not of p38 (PD169316), prevented Cd-induced neuronal cell death in part through inhibition of [Ca(2+) ](i) elevation and CaMKII phosphorylation. The results indicate that Cd activates MAPK/mTOR network triggering neuronal cell death, by stimulating CaMKII. Our findings underscore a central role of CaMKII in the neurotoxicology of Cd, and suggest that manipulation of intracellular Ca(2+) level or CaMKII activity may be exploited for prevention of Cd-induced neurodegenerative disorders.  相似文献   

12.
Cadmium (Cd) is a well-known toxic heavy metal that accumulates in the aquatic environment. Cd has been reported to induce oxidative damage and apoptosis. We investigated the regulation mechanism of hydrogen peroxide (H(2)O(2)) on Cd-induced apoptosis. We show that in the gills of the freshwater crab Sinopotamon henanense Cd induced apoptosis, in a time- and concentration-dependent manner, as confirmed by DNA fragmentation analysis and transmission electron microscopy. Additionally, Cd caused production of H(2)O(2) after 2h of treatment at 58mg L(-1) Cd, and significantly increased the caspase-3/8/9 activity in crabs relative to the control group. Pre-treatment with the scavenger for H(2)O(2), dimethylthiourea (DMTU) and antioxidant, N-acetyl cysteine (NAC), effectively inhibited the activities of caspase-3 and caspase-9, eventually blocked Cd-induced DNA fragmentation and the appearance of markers for apoptotic cell death. These results suggest that Cd might induce intracellular H(2)O(2) generation to trigger the crab apoptotic processes by regulating the activities of caspase enzymes.  相似文献   

13.
Arsenic is a widespread environmental toxic agent that has been shown to cause diverse tissue and cell damage and at the same time to be an effective anti-cancer therapeutic agent. The objective of this study is to explore the signaling mechanisms involved in arsenic toxicity. We show that the IkappaB kinase beta (IKKbeta) plays a crucial role in protecting cells from arsenic toxicity. Ikkbeta(-)(/)(-) mouse 3T3 fibroblasts have decreased expression of antioxidant genes, such as metallothionein 1 (Mt1). In contrast to wild type and IKKbeta-reconstituted Ikkbeta(-)(/)(-) cells, IKKbeta-null cells display a marked increase in arsenic-induced reactive oxygen species (ROS) accumulation, which leads to activation of the MKK4-c-Jun NH(2)-terminal kinase (JNK) pathway, c-Jun phosphorylation, and apoptosis. Pretreatment with the antioxidant N-acetylcysteine (NAC) and expression of MT1 in the Ikkbeta(-)(/)(-) cells prevented JNK activation; moreover, NAC pretreatment, MT1 expression, MKK4 ablation, and JNK inhibition all protected cells from death induced by arsenic. Our data show that two signaling pathways appear to be important for modulating arsenic toxicity. First, the IKK-NF-kappaB pathway is crucial for maintaining cellular metallothionein-1 levels to counteract ROS accumulation, and second, when this pathway fails, excessive ROS leads to activation of the MKK4-JNK pathway, resulting in apoptosis.  相似文献   

14.
Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis.  相似文献   

15.
Mycophenolic acid (MPA)-induced β-cell toxicity is an important factor for islet graft function. The signal transduction mechanisms underlying this process have not been fully explored. Using a proteomics approach, we examined protein expression patterns in MPA-treated RIN-5 cells and found that RhoGDI-α expression is altered by MPA-treatment. We examined the relationship between RhoGDI-α expression and activated JNK during MPA-induced apoptosis. Cells were treated with N-acetyl-cysteine (NAC), caspase inhibitor, JNK inhibitor, guanosine or GTP for 1 h before being treated with MPA. To investigate the regulatory effects of RhoGDI-α on JNK activity, we examined cells showing either elevated or reduced expression of RhoGDI-α as a result of transfection with cDNA or siRNA constructs, respectively. MPA significantly increased cell death, caspase-3 expression and JNK activation, but it decreased the expression of a protein spot 25 observed by two-dimensional electrophoresis. This protein 25 was identified as RhoGDI-α by mass spectrometry. MPA-induced cell death and down-regulation of RhoGDI-α were prevented by guanosine, GTP or a JNK inhibitor. However, MPA-induced cell death was partially restored by treatment with a caspase inhibitor, but not by NAC treatment. RhoGDI-α expression was not affected by treatment with NAC or caspase inhibitor. Over-expression of RhoGDI-α increased cell viability and decreased activated JNK expression following exposure to MPA, whereas knockdown of RhoGDI-α enhanced MPA-induced cell death and increased the activation of JNK. In conclusion, MPA induces significant apoptosis in insulin-secreting cells via down-regulation of RhoGDI-α linked with increased JNK expression. This RhoGDI-α/JNK pathway might be the focus of therapeutic target for the prevention of MPA-induced islet apoptosis.  相似文献   

16.
To investigate the role of mitogen-activated protein kinase (MAPK) and downstream events in cadmium (Cd)-induced neuronal apoptosis executed via the mitochondrial apoptotic pathway, this study used the PC-12 cell line as a neuronal model. The result showed that Cd significantly decreased cell viability and the Bcl-2?/?Bax ratio and increased the percentage of apoptotic cells, release of cytochrome c, caspase-3, and poly(ADP-ribose) polymerase cleavage, and nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G. In addition, exposure to Cd-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2?/?Bax ratio and cytochrome c release and suppressed caspase-3 and poly(ADP-ribose) polymerase cleavage and AIF and endonuclease G nuclear translocation. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathway played an important role in Cd-induced PC12 cells apoptosis.  相似文献   

17.
The hierarchy of events accompanying induction of apoptosis by the proteasome inhibitor Bortezomib was investigated in Jurkat lymphoblastic and U937 myelomonocytic leukemia cells. Treatment of Jurkat or U937 cells with Bortezomib resulted in activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK (mitogen-activated protein kinase), inactivation of extracellular signal-regulating kinase 1/2 (ERK1/2), cytochrome c release, caspase-9, -3, and -8 activation, and apoptosis. Bortezomib-mediated cytochrome c release and caspase activation were blocked by the pharmacologic JNK inhibitor SP600125, but lethality was not diminished by the p38 MAPK inhibitor SB203580. Inducible expression of a constitutively active MEK1 construct blocked Bortezomib-mediated ERK1/2 inactivation, significantly attenuated Bortezomib lethality, and unexpectedly prevented JNK activation. Conversely, pharmacologic MEK/ERK1/2 inhibition promoted Bortezomib-mediated JNK activation and apoptosis. Lastly, the antioxidant N-acetyl-l-cysteine (LNAC) attenuated Bortezomib-mediated reactive oxygen species (ROS) generation, ERK inactivation, JNK activation, mitochondrial dysfunction, and apoptosis. In contrast, enforced MEK1 and ERK1/2 activation or JNK inhibition did not modify Bortezomib-induced ROS production. Together, these findings suggest that in human leukemia cells, Bortezomib-induced oxidative injury operates at a proximal point in the cell death cascade to antagonize cytoprotective ERK1/2 signaling, promote activation of the stress-related JNK pathway, and to trigger mitochondrial dysfunction, caspase activation, and apoptosis. They also suggest the presence of a feedback loop wherein Bortezomib-mediated ERK1/2 inactivation contributes to JNK activation, thereby amplifying the cell death process.  相似文献   

18.
The ability of the derivatives of macrosphelides (MS) core (simplified 16-membered core structure of natural MS) to induce apoptosis in human lymphoma U937 cells was investigated. Of the five compounds examined, MS core with ketones at 8 and 14 positions (MS5) showed the highest potency to induce apoptosis, while another, MS3 with one ketone, was minimal potent. MS5 was found to induce apoptosis in the U937 cells in a time- and dose-dependent fashion, as confirmed by DNA fragmentation analysis. MS5 treated cells showed increase in intracellular reactive oxygen species (ROS), glutathione depletion, Bid activation and lipid peroxidation. Pretreatment of cells with pancaspase inhibitor resulted in the complete inhibition of MS5-induced apoptosis. N-Acetyl-l-cysteine (NAC) pretreatment resulted in the increase in glutathione concentration, reduction of intracellular ROS, complete inhibition of DNA fragmentation, mitochondrial membrane potential (MMP) collapse, Fas externalization and caspase-8 activation. Furthermore, MS5-induced oxidative stress also triggered transient increase in intracellular calcium ion ([Ca2+]i) concentration which was completely inhibited by NAC. Pretreatment with an intracellular Ca2+ chelator, BAPTA-AM reduced MS5-induced DNA fragmentation and caspase-8 activation while it has marginal effects on MMP collapse. Taken together our present data showed that a rapid increase in intracellular ROS by MS5 triggers apoptosis via the Fas/caspase-8-mediated mitochondrial pathway suggesting that the presence of diketone makes the compound more potent to induce apoptosis. These characteristics of MS5 will make it useful for therapeutic applications of targeted apoptosis.  相似文献   

19.
Doxorubicin (Dox) is widely used to treat a variety of tumors. However, resistance to this drug is common, making successful treatment more difficult. Previously, we introduced a novel phytosphingosine derivative, N,N-dimethyl phytosphingosine (DMPS), as a potent anticancer therapeutic agent in human leukemia cells. This study was performed to investigate whether DMPS can sensitize HL-60/MX2, a multidrug-resistant variant of HL-60, to Dox-induced apoptosis. Low concentrations of DMPS sensitized HL-60/MX2 cells to Dox-induced apoptosis. Combined Dox + DMPS treatment-induced apoptosis was accompanied by the activation of caspase-8 and caspase-3 as well as PARP cleavage. Cytochrome c and AIF release were also observed in Dox + DMPS-treated HL60/MX2 cells. Pretreatment with z-VAD-fmk markedly prevented caspase-3 activation and moderately suppressed apoptosis, suggesting that Dox + DMPS-induced apoptosis is somewhat (not completely) dependent on caspase. Cytochrome c and AIF release were not affected by pretreatment with z-VAD-fmk. The ROS scavenger NAC efficiently suppressed not only ROS generation, but also caspase-3-mediated PARP cleavage, apoptosis, and release of cytochrome c and AIF, indicating a role of ROS in combined Dox + DMPS treatment-induced apoptotic death signaling. Taken together, these observations suggest that DMPS may be used as a therapeutic agent for overcoming drug-resistance in cancer cells by enhancing drug-induced apoptosis.  相似文献   

20.
The development of therapeutic strategies to inhibit reactive oxygen species (ROS)-mediated damage in blood vessels has been limited by a lack of specific targets for intervention. Targeting ROS-mediated events in the vessel wall is of interest, because ROS play important roles throughout atherogenesis. In early atherosclerosis, ROS stimulate vascular smooth muscle cell (VSMC) growth, whereas in late stages of lesion development, ROS induce VSMC apoptosis, causing atherosclerotic plaque instability. To identify putative protective genes against oxidative stress, mouse aortic VSMC were infected with a retroviral human heart cDNA expression library, and apoptosis was induced in virus-infected cells by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) treatment. A total of 17 different, complete cDNAs were identified from the DMNQ-resistant VSMC clones by PCR amplification and sequencing. The cDNA encoding PP1cgamma1 (catalytic subunit of protein phosphatase 1) was present in several independent DMNQ-resistant VSMC clones. DMNQ increased mitochondrial ROS production, caspase-3/7 activity, DNA fragmentation, and decreased mitochondrial transmembrane potential in VSMC while decreasing PP1cgamma1 activity and expression. Depletion of PP1cgamma1 expression by short hairpin RNA significantly enhanced basal as well as DMNQ-induced VSMC apoptosis. PP1cgamma1 overexpression abrogated DMNQ-induced JNK1 activity, p53 Ser(15) phosphorylation, and Bax expression and protected VSMC against DMNQ-induced apoptosis. In addition, PP1cgamma1 overexpression attenuated DMNQ-induced caspase-3/7 activation and DNA fragmentation. Inhibition of p53 protein expression using small interfering RNA abrogated DMNQ-induced Bax expression and significantly attenuated VSMC apoptosis. Together, these data indicate that PP1cgamma1 overexpression promotes VSMC survival by interfering with JNK1 and p53 phosphorylation cascades involved in apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号