首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene coding for a barley CMd protein was isolated from a genomic library using a cDNA probe encoding the wheat CM3 protein. Promoter sequence analysis reveals motifs found in genes specifically expressed in endosperm and aleurone cells, as well as TATA and other putative functional boxes. 720 bp of the Hv85.1 CMd protein gene promoter, when fused to a gus coding region, were unable to direct GUS activity in the seeds of transgenic tobacco plants. In contrast, the same construction delivered into immature maize kernels by microprojectile bombardment was able to direct expression of GUS in the outermost cell layers of maize endosperm in both a tissue-specific and a developmentally determined manner.  相似文献   

2.
The rha1 gene from Arabidopsis encodes a small GTP binding protein belonging to the Ypt/Rab family. Transgenic Arabidopsis plants containing the promoter region of the rha1 gene fused to the beta-glucuronidase (gus) reporter gene revealed gus expression limited mainly to the guard cells of stomata, the stipules, and the root tip of young plants. In flowering plants, expression was found predominantly in the receptacle and in guard cells of the different flower organs. High GUS activity could also be seen in callus tissue and developing seeds. No detectable activity was present in other plant tissues; activity could not be induced by various treatments. GUS activity was visualized histochemically using both 5-bromo-4-chloro-3-indolyl beta-D-glucuronide and a newly developed GUS substrate: Sudan II-beta-glucuronide. The latter precipitates as red crystals at the site of GUS activity. Results obtained by the gus analysis were confirmed by whole-mount mRNA in situ hybridization. A hypothesis for the function of the Rha1 protein is discussed.  相似文献   

3.
VASA (VAS), a key protein in establishing the specialized translational activity of the Drosophila pole plasm, accumulates at the posterior pole of the developing oocyte. We identified a gene, gustavus (gus), that encodes a protein that interacts with VAS. A gus mutation blocks posterior localization of VAS, as does deletion of a segment of VAS containing the GUS binding site. Like VAS, GUS is present in cytoplasmic ribonucleoprotein particles. Heterozygotes for gus or a deletion including gus produce embryos with fewer pole cells and posterior patterning defects. Therefore, GUS is essential for the posterior localization of VAS. However, gus is not required for the posterior localization of oskar (osk). Apparent gus orthologs are present in mammalian genomes.  相似文献   

4.
杜氏盐藻DCA1启动子内GT重复序列在盐诱导调控中的作用   总被引:1,自引:0,他引:1  
为了研究杜氏盐藻双拷贝碳酸酐酶(DCA1)启动子中高度重复的GT序列在盐诱导表达时的调控作用,设计不同的引物,通过PCR法获得6条不同长度的DCA1启动子片段,分别与gus报告基因融合后构建6个表达载体;电击法转化杜氏盐藻细胞。组织化学染色和荧光定量法检测GUS在不同盐浓度下的瞬时表达。结果显示,DCA1启动子内高度重复的GT序列无论与其上游、下游或上下游片段同时结合均能驱动gus基因的表达,并且其表达受氯化钠浓度调控,其中和上下游均结合时活性最强;无GT重复序列的融合片段及GT 重复的下游片段也能驱动gus基因的表达,但其表达不受氯化钠浓度调控;而GT重复的上游片段不能驱动gus基因的表达。结果提示:盐藻DCA1启动子中高度重复的GT序列在盐诱导调控中起重要作用,可能为一种新型的盐诱导元件。  相似文献   

5.
Immature embryos (stage I) and cotyledonary somatic embryos(stage III) of black spruce [Picea mariana (Mill) B.S.P.] werebombarded with tungsten particles coated with a gene constructcontaining the fusion of gus:: nptll. GUS (ß-glucuronidase)activity was monitored histochemically with X-gluc giving ablue colour where transient gene expression was detected inthe bombarded tissues. A high transient expression of gus wasobserved in stage I embryo cultures 2 d after bombardment (202GUS foci per 300 mg tissue). GUS activity had substantiallydiminished in this material 14 d after bombardment, when grownin liquid LP maintenance medium containing BA (4.4µM),2,4-D (9µM) and 1% sucrose. However, when stage I embryoswere cultured on LP maturation medium containing BA (40 µM),IBA (1 µM), 3.4% sucrose and 0.8% agar, GUS activity after2 d was 335 GUS foci per 300 mg tissue, and the activity wasdetected until 30 d after bombardment. With stage III somaticembryos cultured on LP maintenance medium, 92% showed GUS activity2d after bombardment (16 GUS foci per embryo), and 31 % showedactivity 30 d after bombardment (4 GUS foci per embryo). GUSactivity was still evident in 12% of the embryos (2 GUS fociper embryo) 45 d after bombardment. Key words: Black spruce, gus = E. coli geneuid A encoding ß-glucuronidase, nptll = gene encoding neomycin phos-photransferase, somatic embryos  相似文献   

6.
Aquaporins make water-selective channels in plants, facilitating the permeation of water through membranes and adjusting water fast transport during seed germination, cell elongation, stoma movement, fertilization and responses to environmental stresses. They belong to the MIP (major intrinsic protein) family with molecular weight of 2629 kD and are characterized by six membrane-spanning a-helixes connected by five loops and short N-terminal and C-terminal domains in the cytoplasm[13]. The p…  相似文献   

7.
We have used an in vivo selection approach to isolate a gene encoding a bifunctional fusion peptide between Escherichia coli beta-glucuronidase (GUS) and neomycin phosphotransferase II (NPT-II) from transposon Tn5 in the NH2-GUS::NPT-II-COOH configuration. The fused gene is predicted to encode a fusion peptide 885 amino acids long, and was shown in E. coli to synthesize a 97-kDa GUS+ NPT-II+ gene product. Gel-filtration chromatography suggested that, while the native GUS may be active as a dimer and NPT-II as a monomer, the elution profile of the fusion protein is consistent with that of a trimer. The fusion marker has been produced and defined in transgenic Nicotiana tabacum plants, where both the chimeric gene and the gene product were stable. The bifunctional gene enabled direct KmR selection at the callus stage and enzymatic or histochemical assessment of the steady-state production of GUS activity in regenerated plants. In addition to allowing structure-function determination for the GUS and NPT-II domains of the fusion peptide, the gus::npt-II gene simplifies vector constructs where both marker domains are desired.  相似文献   

8.
9.
Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens   总被引:3,自引:0,他引:3  
A reproducible protocol has been established for the transformation of Ginkgo biloba by Agrobacterium tumefaciens . Embryos were co-cultivated with Agrobacterium tumefaciens GV3101 (pGV2260) carrying the binary vector pTHW136, which contained the gus reporter gene and the nptII selectable gene, encoding the enzymes β -glucuronidase (GUS) and neomycin phophotransferase II, respectively. Transient GUS activity has been used to screen the effects of different factors on the transfer of DNA into embryos (age of embryos, infection method, composition of co-cultivation medium). Then, experimental conditions have been defined to obtain transgenic kanamycin-resistant G. biloba calluses expressing GUS activity. The highest rate of transformation (45%) was reached using 1.5-month-old embryos co-cultivated on a medium lacking mineral elements. The integration of gus and nptII genes in calluses was confirmed by polymerase chain reaction analysis and Southern blot analysis.  相似文献   

10.
Three random translational -glucuronidase (gus) gene fusions were previously obtained in Arabidopsis thaliana, using Agrobacterium-mediated transfer of a gus coding sequence without promoter and ATG initiation site. These were analysed by IPCR amplification of the sequence upstream of gus and nucleotide sequence analysis. In one instance, the gus sequence was fused, in inverse orientation, to the nos promoter sequence of a truncated tandem T-DNA copy and translated from a spurious ATG in this sequence. In the second transgenic line, the gus gene was fused to A. thaliana DNA, 27 bp downstream an ATG. In this line, a large deletion occurred at the target site of the T-DNA. In the third line, gus is fused in frame to a plant DNA sequence after the eighth codon of an open reading frame encoding a protein of 619 amino acids. This protein has significant homology with animal and plant (receptor) serine/threonine protein kinases. The twelve subdomains essential for kinase activity are conserved. The presence of a potential signal peptide and a membrane-spanning domain suggests that it may be a receptor kinase. These data confirm that plant genes can be tagged as functional translational gene fusions.  相似文献   

11.
以玉米品种“吉糯1号”的基因组DNA为模板,通过PCR扩增得到玉米淀粉分支酶基因的启动子序列,克隆到pMD18-TVector上,经测序,该启动子大小为934bp。与已报道的序列比较仅有14个核苷酸发生改变,同源性为98.5%。用该启动子取代植物表达载体pBI121的35S启动子,与GUS基因编码区连接,构建成融合质粒pSBE-GUS。经农杆菌介导法转化烟草,获得了转基因植株。GUS活性检测结果表明,由该启动子序列引导的GUS基因能在种子中表达,而在其他组织中表达微弱或未表达,证实该启动子具有种子特异性表达的功能。  相似文献   

12.
Bt水稻中crylAb基因的遗传分析   总被引:10,自引:0,他引:10  
用PCR、GUS染色和Western点杂交技术检测了Bt水稻杂交后代群体,在394株GUS阳性株中,有392株表达Bt蛋白,协同表达株率达99.49%。由此表明,在杂交后代中报告基因gus和目的基因crylAb紧密连锁遗传与表达。GUS组织染色和Southern杂交检测表明Bt水稻中的crylAb基因呈单位点显性基因遗传,且在有性世代中能稳定传递,还发现,在BC1、BC1F2和粳粳交F2群体中crylAb基因呈单位点显性基因遗传,而在籼粳交F2群体中偏离3:1分离。  相似文献   

13.
14.
15.
Bt水稻杂交育种中转基因的遗传分析   总被引:12,自引:0,他引:12  
利用PCR、GUS染色和Western印迹杂交技术检测了Bt水稻杂交后代群体,发现在394株GUS阳性株中,共有392株表达Bt蛋白,协同表达株率达99.49%。由此表明,在杂交后代中报告基因Gus和目的基因crylAb紧密连锁遗传与表达。本试验还发现,在BC1、BC1F2和粳粳交F2群体中转基因呈单基因显性遗传,而在籼粳交F2群体中偏离3:1分离。 Abstract:Improved histochemical staining for GUS activity,PCR and Western blotting were used to detect the population of Bt rice crossed to conventional rice varieties.A total of 392 plants expressing Bt toxin protein were found in 394 GUS positive plants.The result demonstrated that cry1Ab gene closely inherited and expressed with reporter gene gus.Therefore,it is possible to develop GUS-assisted-selection to preliminarily identify the Bt gene and study the inheritance of transgenes in (back)cross breeding.Mendelian segragation of reporter gene Gus was observed in F2,BC1 and BC1F2 progenies.Thus indicated that transgenes inherited as a single dominant gene in the progenies of Bt rice crossed to conventional rice varieties.  相似文献   

16.
We describe a novel system of exploiting the biolistic process to generate stable transgenic cowpea (Vigna unguiculata) plants. The system is based on combining the use of the herbicide imazapyr to select transformed meristematic cells after physical introduction of the mutated ahas gene (coding for a mutated acetohydroxyacid synthase, under control of the ahas 5' regulatory sequence) and a simple tissue culture protocol. The gus gene (under control of the act2 promoter) was used as a reporter gene. The transformation frequency (defined as the total number of putative transgenic plants divided by the total number of embryonic axes bombarded) was 0.90%. Southern analyses showed the presence of both ahas and gus expression cassettes in all primary transgenic plants, and demonstrated one to three integrated copies of the transgenes into the genome. The progenies (first and second generations) of all self-fertilized transgenic lines revealed the presence of the transgenes (gus and ahas) co-segregated in a Mendelian fashion. Western blot analysis revealed that the GUS protein expressed in the transgenic plants had the same mass and isoelectric point as the bacterial native protein. This is the first report of biolistic-mediated cowpea transformation in which fertile transgenic plants transferred the foreign genes to next generations following Mendelian laws.  相似文献   

17.
Post-transcriptional gene silencing in cultured rice cells   总被引:5,自引:0,他引:5  
  相似文献   

18.
Sedentary plant-parasitic nematodes are able to induce specialized feeding structures in the root system of their host plants by triggering a series of dramatic cellular responses. These changes presumably are accompanied by a reprogramming of gene expression. To monitor such changes, a variety of promoter— gus A fusion constructs were introduced into Arabidopsis and tobacco. Transgenic plants were analysed histochemically for GUS activity in the nematode feeding structures after infection with either Heterodera schachtii or Meloidogyne incognita . Promoters of the Cauliflower Mosaic Virus 35S gene, the bacterial nopaline synthase, rooting loci ( rol ) and T- cyt genes and the plant-derived phenylalanine ammonia-lyase I gene, which are highly active in non-infected roots, were all downregulated in the feeding structures as indicated by the strong decrease of GUS activity inside these structures. Less stringent down-regulation was observed with chimeric gus A fusion constructs harbouring truncated rol B and rol C promoter sequences. Similar observations were made with transgenic Arabidopsis lines that carried randomly integrated promoterless gus A constructs to identify regulatory sequences in the plant genome. Most of the lines that were selected for expression in the root vascular cylinder demonstrated local down-regulation in feeding structures after infection with H. schachtii . The reverse pattern of GUS activity, a blue feeding structure amidst unstained root cells, was also found in several lines. However, GUS activity that was entirely specific for the feeding structures was not observed. Our data show that the expression of a large number of genes is influenced during the development of the nematode feeding structures.  相似文献   

19.
该研究构建了由黄瓜素基因5′端310bp启动子序列驱动β-葡萄糖醛酸酶(GUS)报告基因的植物表达载体pPZP-CGN,通过花粉管通道法将植物表达载体pPZP-CGN导入甜瓜,并采用荧光法定量测定转基因植株中GUS活性。结果显示,gus基因在果实中高表达,而在根、茎、叶等组织中表达活性很低,表明黄瓜素基因上游310bp启动子具有指导外源基因在果实中高效特异表达的特性。  相似文献   

20.
A genetic transformation procedure for white pine has been developed after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. This efficient transformation procedure led to an average of four independent transformed lines per gram of cocultivated embryogenic tissue and up to 50 transformed lines can be obtained in a routine experiment. Constructs bearing the uidA gene or the green fluorescent protein (GFP) gene were introduced and -glucuronidase (GUS) activity was followed over time. The expression of the uidA gene was lowest with a 35S-gus-intron construct and was 20-fold higher with a 35S-35S-AMVgus::nptII construct. The addition of scaffold attachment region (SAR) sequences surrounding the gus::nptII fusion did not significantly enhance the GUS activity. Transformed mature somatic embryos have been germinated and plantlets are presently being acclimatized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号