首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Field‐scale experiments simulating realistic future climate scenarios are important tools for investigating the effects of current and future climate changes on ecosystem functioning and biogeochemical cycling. We exposed a seminatural Danish heathland ecosystem to elevated atmospheric carbon dioxide (CO2), warming, and extended summer drought in all combinations. Here, we report on the short‐term responses of the nitrogen (N) cycle after 2 years of treatments. Elevated CO2 significantly affected aboveground stoichiometry by increasing the carbon to nitrogen (C/N) ratios in the leaves of both co‐dominant species (Calluna vulgaris and Deschampsia flexuosa), as well as the C/N ratios of Calluna flowers and by reducing the N concentration of Deschampsia litter. Belowground, elevated CO2 had only minor effects, whereas warming increased N turnover, as indicated by increased rates of microbial NH4+ consumption, gross mineralization, potential nitrification, denitrification and N2O emissions. Drought reduced belowground gross N mineralization and decreased fauna N mass and fauna N mineralization. Leaching was unaffected by treatments but was significantly higher across all treatments in the second year than in the much drier first year indicating that ecosystem N loss is highly sensitive to changes and variability in amount and timing of precipitation. Interactions between treatments were common and although some synergistic effects were observed, antagonism dominated the interactive responses in treatment combinations, i.e. responses were smaller in combinations than in single treatments. Nonetheless, increased C/N ratios of photosynthetic tissue in response to elevated CO2, as well as drought‐induced decreases in litter N production and fauna N mineralization prevailed in the full treatment combination. Overall, the simulated future climate scenario therefore lead to reduced N turnover, which could act to reduce the potential growth response of plants to elevated atmospheric CO2 concentration.  相似文献   

2.
Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out experimental manipulations involving ecosystem warming and prolonged summer drought in ericaceous shrublands across a European climate gradient. We used retractable covers to create artificial nighttime warming and prolonged summer drought to 20-m2 experimental plots. Combining the data from across the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls on soil respiration, net N mineralization and nitrification, and litter decomposition. Trends of 0%–19% increases of soil respiration in response to warming and decreases of 3%–29% in response to drought were observed. Across the environmental gradient and below soil temperatures of 20°C at a depth of 5–10 cm, a mean Q10 of 4.1 in respiration rates was observed although this varied from 2.4 to 7.0 between sites. Highest Q10 values were observed in Spain and the UK and were therefore not correlated with soil temperature. A trend of increased accumulated surface litter mass loss was observed with experimental warming (2%– 22%) but there was no consistent response to experimental drought. In contrast to soil respiration and decomposition, variability in net N mineralization was best explained by soil moisture rather than temperature. When water was neither limiting or in excess, a Q10 of 1.5 was observed for net N mineralization rates. These data suggest that key soil processes will be differentially affected by predicted changes in rainfall pattern and temperature and the net effect on ecosystem functioning will be difficult to predict without a greater understanding of the controls underlying the sensitivity of soils to climate variables.  相似文献   

3.
The ongoing climate change affects biogeochemical cycling in terrestrial ecosystems, but the magnitude and direction of this impact is yet unclear. To shed further light on the climate change impact, we investigated alterations in the soil nitrogen (N) cycling in a Danish heathland after 5 years of exposure to three climate change factors, i.e. warming, elevated CO2 (eCO2) and summer drought, applied both in isolation and in combination. By conducting laboratory 15N tracing experiments we show that warming increased both gross N mineralization and nitrification rates. In contrast, gross nitrification was decreased by eCO2, an effect that was more pronounced when eCO2 was combined with warming and drought. Moreover, there was an interactive effect between the warming and CO2 treatment, especially for N mineralization: rates increased at warming alone but decreased at warming combined with eCO2. In the full treatment combination, simulating the predicted climate for the year 2075, gross N transformations were only moderately affected compared to control, suggesting a minor alteration of the N cycle due to climate change. Overall, our study confirms the importance of multifactorial field experiments for a better understanding of N cycling in a changing climate, which is a prerequisite for more reliable model predictions of ecosystems responses to climate change.  相似文献   

4.
Ma LN  Lü XT  Liu Y  Guo JX  Zhang NY  Yang JQ  Wang RZ 《PloS one》2011,6(11):e27645

Background

Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.

Methodology/Principal Findings

A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.

Conclusions/Significance

Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.  相似文献   

5.
We assessed the response of soil microbial nitrogen (N) cycling and associated functional genes to elevated temperature at the global scale. A meta‐analysis of 1,270 observations from 134 publications indicated that elevated temperature decreased soil microbial biomass N and increased N mineralization rates, both in the presence and absence of plants. These findings infer that elevated temperature drives microbially mediated N cycling processes from dominance by anabolic to catabolic reaction processes. Elevated temperature increased soil nitrification and denitrification rates, leading to an increase in N2O emissions of up to 227%, whether plants were present or not. Rates of N mineralization, denitrification and N2O emission demonstrated significant positive relationships with rates of CO2 emissions under elevated temperatures, suggesting that microbial N cycling processes were associated with enhanced microbial carbon (C) metabolism due to soil warming. The response in the abundance of relevant genes to elevated temperature was not always consistent with changes in N cycling processes. While elevated temperature increased the abundances of the nirS gene with plants and nosZ genes without plants, there was no effect on the abundances of the ammonia‐oxidizing archaea amoA gene, ammonia‐oxidizing bacteria amoA and nirK genes. This study provides the first global‐scale assessment demonstrating that elevated temperature shifts N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification in terrestrial ecosystems. These findings infer that elevated temperatures have a profound impact on global N cycling processes with implications of a positive feedback to global climate and emphasize the close linkage between soil microbial C and N cycling.  相似文献   

6.
Rapid temperature and precipitation changes in High Arctic tundra ecosystems are altering the biogeochemical cycles of carbon (C) and nitrogen (N), but in ways that are difficult to predict. The challenge grows from the uncertainty of N cycle responses and the extent to which shifts in soil N are coupled with the C cycle and productivity of tundra systems. We used a long‐term (since 2003) experiment of summer warming and supplemental summer water additions to a High Arctic ecosystem in NW Greenland, and applied a combination of discrete sampling and in situ soil core incubations to measure C and N pools and seasonal microbial processes that might control plant‐available N. We hypothesized that elevated temperature and increased precipitation would stimulate microbial activity and net inorganic N mineralization, thereby increasing plant N‐availability through the growing season. While we did find increased N mineralization rates under both global change scenarios, water addition also significantly increased net nitrification rates, loss of NO3?‐N via leaching, and lowered rates of labile organic N production. We also expected the chronic warming and watering would lead to long‐term changes in soil N‐cycling that would be reflected in soil δ15N values. We found that soil δ15N decreased under the different climate change scenarios. Our results suggest that temperature accelerates biological processes and existing C and N transformations, but moisture increases soil hydraulic connectivity and so alters the pathways, and changes the fate of the products of C and N transformations. In addition, our findings indicate that warmer, wetter High Arctic tundra will be cycling N and C in ways that may transform these landscapes in part leading to greater C sequestration, but simultaneously, N losses from the upper soil profile that may be transported to depth dissolved in water and or transported off site in lateral flow.  相似文献   

7.
Wildfires have shaped the biogeography of south Chilean Araucaria–Nothofagus rainforest vegetation patterns, but their impact on soil properties and associated nutrient cycling remains unclear. Nitrogen (N) availability shows a site‐specific response to wildfire events indicating the need for an increased understanding of underlying mechanisms that drive changes in soil N cycling. In this study, we selected unburned and burned sites in a large area of the National Park Tolhuaca that was affected by a stand‐replacing wildfire in February 2002. We conducted net N cycling flux measurements (net ammonification, net nitrification and net N mineralization assays) on soils sampled 3 years after fire. In addition, samples were physically fractionated and natural abundance of C and N, and 13C‐NMR analyses were performed. Results indicated that standing inorganic N pools were greater in the burned soil, but that no main differences in net N cycling fluxes were observed between unburned and burned sites. In both sites, net ammonification and net nitrification fluxes were low or negative, indicating N immobilization. Multiple linear regression analyses indicated that soil N cycling could largely be explained by two parameters: light fraction (LF) soil organic matter N content and aromatic Chemical Oxidation Resistant Carbon (CORECarom), a relative measure for char. The LF fraction, a strong NH4+ sink, decreased as a result of fire, while CORECarom increased in the burned soil profile and stimulated NO3 production. The absence of increased total net nitrification might relate to a decrease in heterotrophic nitrification after wildfire. We conclude that (i) wildfire induced a shift in N transformation pathways, but not in total net N mineralization, and (ii) stable isotope measurements are a useful tool to assess post‐fire soil organic matter dynamics.  相似文献   

8.
9.
In situ nitrogen (N) transformations and N availability were examined over a four‐year period in two soil microclimates (xeric and mesic) under a climate‐warming treatment in a subalpine meadow/sagebrush scrub ecotone. Experimental plots that spanned the two soil microclimates were exposed to an in situ infrared (IR) climate change manipulation at the Rocky Mountain Biological Laboratory, near Crested Butte, Colorado. Although the two microclimates did not differ significantly in their rates of N transformations in the absence of heating, they differed significantly in their response to increased IR. Under a simulated warming in the sagebrush‐dominated xeric microclimate, gross N mineralization rates doubled and immobilization rates increased by up to 60% over the first 2 years of the study but declined to predisturbance rates by the fourth year. This temporal pattern of gross mineralization rates correlated with a decline in SOM. Concurrently, rates of net mineralization rates in the heated plots were 60% higher than the controls after the first year. There were no differences in gross or net nitrification rates with heating in the xeric soils. In contrast to the xeric microclimate, there were no significant effects of heating on any N transformation rates in the mesic microclimate. The differing responses in N cycling rates of the two microclimate to the increased IR is most certainly the result of differences in initial soil moisture conditions and vegetation type and cover.  相似文献   

10.
Altered freeze‐thaw cycle (FTC) patterns due to global climate change may affect nitrogen (N) cycling in terrestrial ecosystems. However, the general responses of soil N pools and fluxes to different FTC patterns are still poorly understood. Here, we compiled data of 1519 observations from 63 studies and conducted a meta‐analysis of the responses of 17 variables involved in terrestrial N pools and fluxes to FTC. Results showed that under FTC treatment, soil NH4+, NO3?, NO3? leaching, and N2O emission significantly increased by 18.5%, 18.3%, 66.9%, and 144.9%, respectively; and soil total N (TN) and microbial biomass N (MBN) significantly decreased by 26.2% and 4.7%, respectively; while net N mineralization or nitrification rates did not change. Temperate and cropland ecosystems with relatively high soil nutrient contents were more responsive to FTC than alpine and arctic tundra ecosystems with rapid microbial acclimation. Therefore, altered FTC patterns (such as increased duration of FTC, temperature of freeze, amplitude of freeze, and frequency of FTC) due to global climate warming would enhance the release of inorganic N and the losses of N via leaching and N2O emissions. Results of this meta‐analysis help better understand the responses of N cycling to FTC and the relationships between FTC patterns and N pools and N fluxes.  相似文献   

11.
Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m?2 year?1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.  相似文献   

12.
Soil respiration (Rs) is the second‐largest terrestrial carbon (C) flux. Although Rs has been extensively studied across a broad range of biomes, there is surprisingly little consensus on how the spatiotemporal patterns of Rs will be altered in a warming climate with changing precipitation regimes. Here, we present a global synthesis Rs data from studies that have manipulated precipitation in the field by collating studies from 113 increased precipitation treatments, 91 decreased precipitation treatments, and 14 prolonged drought treatments. Our meta‐analysis indicated that when the increased precipitation treatments were normalized to 28% above the ambient level, the soil moisture, Rs, and the temperature sensitivity (Q10) values increased by an average of 17%, 16%, and 6%, respectively, and the soil temperature decreased by ?1.3%. The greatest increases in Rs and Q10 were observed in arid areas, and the stimulation rates decreased with increases in climate humidity. When the decreased precipitation treatments were normalized to 28% below the ambient level, the soil moisture and Rs values decreased by an average of ?14% and ?17%, respectively, and the soil temperature and Q10 values were not altered. The reductions in soil moisture tended to be greater in more humid areas. Prolonged drought without alterations in the amount of precipitation reduced the soil moisture and Rs by ?12% and ?6%, respectively, but did not alter Q10. Overall, our synthesis suggests that soil moisture and Rs tend to be more sensitive to increased precipitation in more arid areas and more responsive to decreased precipitation in more humid areas. The responses of Rs and Q10 were predominantly driven by precipitation‐induced changes in the soil moisture, whereas changes in the soil temperature had limited impacts. Finally, our synthesis of prolonged drought experiments also emphasizes the importance of the timing and frequency of precipitation events on ecosystem C cycles. Given these findings, we urge future studies to focus on manipulating the frequency, intensity, and seasonality of precipitation with an aim to improving our ability to predict and model feedback between Rs and climate change.  相似文献   

13.
选择中亚热带毛竹人工林为研究对象,利用野外原位和室内培养相结合的方法,探讨不同间伐强度(25%间伐、50%间伐)和林下植被剔除对土壤氮矿化速率及其温度敏感性的影响。结果表明,25%间伐显著增加土壤氨化速率(P0.01),但降低硝化速率(P0.01);50%间伐显著增加土壤硝化速率(P0.01),而林下植被剔除显著降低土壤硝化速率(P0.01)。相关分析的结果表明,土壤氨化速率与有机碳(SOC)、全氮(TN)及全磷(TP)含量呈显著负相关关系;硝化速率与SOC、含水量(SWC)呈显著正相关关系,与铵态氮(NH~+_4-N)含量呈显著负相关关系。随着温度的升高,不同处理下的氨化速率均显著增加(P0.01),而硝化速率显著降低(P0.01)。25%间伐显著降低土壤净氮矿化和氨化过程的Q_(10)值,对硝化过程的Q_(10)值影响不显著;50%间伐对氨化和硝化过程的Q_(10)值影响均不显著;林下植被剔除对氨化过程的Q_(10)值影响不显著,但显著增加硝化过程的Q_(10)值。不同处理下的土壤氮矿化过程的Q_(10)值介于1.17—1.36之间。25%间伐和林下植被保留有利于毛竹林土壤氮素的供给。  相似文献   

14.
While it is increasingly recognized that ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) tree species vary in their effects on soil nitrogen (N) cycling, little is known about the mechanisms causing and how ECM and AM trees adapt to this variation. Using monoculture plots of six ECM and eight AM tropical trees planted in a common garden, we examined whether the contrasting effects of ECM and AM trees on soil N cycling could be explained by their differences in plant traits. Furthermore, rhizosphere effects on soil N transformations and soil exploration by fine roots were also measured to assess whether ECM and AM trees differed in N acquisition capacities. Results showed that soil NH4+‐N concentration, net N mineralization and net nitrification rates were markedly lower, but soil C:N ratio was significantly higher beneath ECM trees than beneath AM trees. This more closed N cycling caused by ECM trees was attributed to their resource‐conservative traits, especially the poorer leaf litter decomposability compared with AM trees. To adapt to their induced lower soil N availability, ECM trees were found to have greater rhizosphere effects on NO3‐N concentration, net N mineralization and net nitrification rates to mine N, and higher soil exploration in terms of root length density to scavenge N from soils, indicating that these two strategies work in synergy to meet N demand of ECM trees. These findings suggest that ECM and AM trees have contrasting effects on soil N cycling owing to their differences in leaf litter decomposability and correspondingly possess different N acquisition capacities.  相似文献   

15.
《植物生态学报》2017,41(9):938
Aims Our objective is to: 1) explore the dynamics of soil nitrogen (N) mineralization in a grassland ecosystem in response to the changes in precipitation intensity and temporal distribution, and 2) identify the controlling factors.Methods The two study sites located in a typical steppe of the Nei Mongol grassland were fenced in 2013 and 1999, respectively. Our field experiment includes manipulations of three levels of precipitation intensity (increased 50%, decreased 50%, control) in three temporal patterns (increased or decreased precipitation for three years; increased or decreased precipitation for two years and no manipulation for one year; increased or decreased precipitation for one year and no manipulation for one year).Important findings 1) The soil net N mineralization and net nitrification rates decreased with changes in the temporal distributions of precipitation from one year to three years, with the maximum values of soil net N mineralization and nitrification rates observed in the treatments of increased or decreased precipitation for one year and no manipulation for one year (+PY1 or -PY1). This indicates that the high precipitation intensity and longer precipitation may have negative effects on soil net N mineralization and nitrification rates, while the moderate soilmoisture and temperature may stimulate soil mineralization. 2) The soil net N mineralization and nitrification rates, soil cumulative N mineralization, and nitrification in the fenced site in 1999 were higher than those in the site fenced in 2013, implying that a long-term enclosure may have promoted nutrient storage and soil quality restoration. 3) The long-term treatments of increased or decreased precipitation had significant effects on soil water content and temperature, whereas the short-term, discontinuous precipitation produced minor effects on soil moisture and temperature. Moreover, the controlling factors for soil N mineralization were different between the two fields. Soil moisture had a major effect on soil inorganic N content and net N mineralization rate in the site fenced in 2013, while soil temperature played a dominant role in the site fenced in 1999, with the net N mineralization rate depressed by higher soil moisture. Our findings suggest that the precipitation intensity and temporal distribution had important impacts on soil N mineralization in the Inner Mongolia grassland; these effects was site-dependent and particularly related to soil texture, community composition, and disturbance, and other factors.  相似文献   

16.
The microbial conversion of organic nitrogen (N) to plant available forms is a critical determinant of plant growth and carbon sequestration in forests worldwide. In temperate zones, microbial activity is coupled to variations in temperature, yet at the ecosystem level, microbial N mineralization seems to play a minor role in determining patterns of N loss. Rather, N losses often appear to vary with seasonality in hydrology and plant demand, while exports over longer periods are thought to be associated with increasing rates of anthropogenic N deposition. We analyzed long‐term (21–32 years) time series of climate and stream and atmospheric chemistry from two temperate deciduous forest watersheds in the southeastern USA to understand the sensitivity of internal forest N cycles to climate variation and atmospheric deposition. We evaluated the time series with a simple analytical model that incorporates key biotic constraints and mechanisms of N limitation and cycling in plant–soil systems. Through maximum likelihood analysis, we derive biologically realistic estimates of N mineralization and its temperature sensitivity (Q10). We find that seasonality and long‐term trends in stream nitrate (NO3) concentrations can in large part be explained by the dynamics of internal biological cycling responding to climate rather than external forcing from atmospheric chemistry. In particular, our model analysis suggests that much of the variation in N cycling in these forests results from the response of microbial activity to temperature, causing NO3 losses to peak in the growing season and to accelerate with recent warming. Extrapolation of current trends in temperature and N deposition suggests that the upturn in temperature may increase future N export by greater than threefold more than from increasing deposition, revealing a potential direct effect of anthropogenic warming on terrestrial N cycles.  相似文献   

17.
Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2O emissions.  相似文献   

18.
To clarify the effects of long-term warming on ecosystem matter cycling, we conducted an in situ 7-year experimental warming (2009–2015) using infrared heaters in a cool temperate semi-natural grassland in Japan. We measured plant aboveground biomass, soil total C and N, soil inorganic N (NH4 +-N and NO3 ?-N), and soil microbial biomass for 7 years (2009–2015). We also measured heterotrophic respiration for 2 years (2013–2014) and assessed net N mineralization and nitrification in 2015. We found that warming immediately increased plant aboveground biomass, but this effect ceased in 2013. However, the soil microbial biomass was continuously depressed by warming. Soil inorganic N concentrations in warmed plots substantially increased in the later years of the experiment (2013–2015) and the potential net N mineralization rate was also higher than in the earlier years. In contrast, heterotrophic respiration decreased with warming in 2013–2014. Our observations indicate that long-term warming has a contrasting effect on plants and soil microbes. In addition, the warming could have different effects on subterranean C and N cycling. To enhance the accuracy of estimation of future climate change, it is essential to continuously observe the warming effects on ecosystems and to focus on the change in subterranean C and N cycling.  相似文献   

19.
Temperate terrestrial ecosystems are currently exposed to increased atmospheric CO2 and progressive climatic changes with increased temperature and periodical drought. We here present results from a field experiment, where the effects of these three main climate change related factors are investigated solely and in all combinations at a temperate heathland. Significant responses were found in the top soils below the two dominant species (Calluna vulgaris and Deschampsia flexuosa). During winter incubation, microbial immobilization of N and ammonification rate decreased in response to warming in Deschampsia soil, and microbial immobilization of N and P decreased in warmed Calluna soil. Warming tended to increase microbial N and P in Calluna but not in Deschampsia soil in fall, and more microbial C was accumulated under drought in Calluna soil. The effects of warming were often counteracted or erased when combined with CO2 and drought. Below Deschampsia, the net nitrification rate decreased in response to drought and, while phosphorus availability and microbial P immobilization decreased, but nitrification increased in response to elevated CO2. Furthermore, leaf litter decomposition of both species decreased in response to drought. These complex changes in availability and release of nutrients from soil organic matter turnover and mineralization in response to elevated CO2 and climate change may influence the future plant carbon sequestration and species composition at temperate heathlands.  相似文献   

20.
Previous studies of the effect of tropical forest conversion to cattle pasture on soil N dynamics showed that rates of net N mineralization and net nitrification were lower in pastures compared with the original forest. In this study, we sought to determine the generality of these patterns by examining soil inorganic N concentrations, net mineralization and nitrification rates in 6 forests and 11 pastures 3 years old or older on ultisols and oxisols that encompassed a wide variety of soil textures and spanned a 700-km geographical range in the southwestern Brazilian Amazon Basin state of Rondônia. We sampled each site during October-November and April-May. Forest soils had higher extractable NO3 ?-N and total inorganic N concentrations than pasture soils, but substantial NO3 ?-N occurred in both forest and pasture soils. Rates of net N mineralization and net nitrification were higher in forest soils. Greater concentrations of soil organic matter in finer textured soils were associated with greater rates of net N mineralization and net nitrification, but this relationship was true only under native forest vegetation; rates were uniformly low in pastures, regardless of soil type or texture. Net N mineralization and net nitrification rates per unit of total soil organic matter showed no pattern across the different forest sites, suggesting that controls of net N mineralization may be broadly similar across a wide range of soil types. Similar reductions in rates of net N transformations in pastures 3 years old or older across a range of textures on these soils suggest that changes to soil N cycling caused by deforestation for pasture may be Basin-wide in extent. Lower net N mineralization and net nitrification rates in established pastures suggest that annual N losses from largely deforested landscapes may be lower than losses from the original forest. Total ecosystem N losses since deforestation are likely to depend on the balance between lower N loss rates from established pastures and the magnitude and duration of N losses that occur in the years immediately following forest clearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号