首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large frugivores play an important role as seed dispersers and their extinction may affect plant regeneration. The consequences of such extinctions depend on the likelihood of other species being functionally redundant and on how post‐dispersal events are affected. We assess the functional redundancy of two seed dispersers of the Atlantic Forest, the muriqui (Brachyteles arachnoides) and the tapir (Tapirus terrestris) through the comparison of their seed dispersal quality, taking into account post‐dispersal events. We compare tapirs and muriquis for: (1) the dung beetle community associated with their feces; (2) the seed burial probability and burial depth by dung beetles; and (3) the seed mortality due to predators or other causes according to burial depth. We determine how seed burial affects seed dispersal effectiveness (SDE) and compare the dispersal quality of four plant species dispersed by these frugivores. Muriqui feces attract 16‐fold more dung beetles per gram of fecal matter and seeds experience 10.5‐fold more burial than seeds in tapir feces. In both feces types, seed mortality due to predation decreases with burial depth but seed mortality due to other causes increases. Total seed mortality differ within plant species according to the primary disperser. Therefore, the effect of seed burial on SDE varies according to the plant species, burial depth, and primary disperser. As tapirs and muriquis differently affect the seed fate, they are not functionally redundant. Since the effect of the primary disperser persists into the post‐dispersal events, we should consider the cascading effects of these processes when assessing functional redundancy.  相似文献   

2.
3.
Seed dispersal is an ecological process crucial for forest regeneration and recruitment. To date, most studies on frugivore seed dispersal have used the seed dispersal effectiveness framework and have documented seed-handling mechanisms, dispersal distances and the effect of seed handling on germination. In contrast, there has been no exploration of “disperser reliability” which is essential to determine if a frugivore is an effective disperser only in particular regions/years/seasons or across a range of spatio-temporal scales. In this paper, we propose a practical framework to assess the spatial reliability of frugivores as seed dispersers. We suggest that a frugivore genus would be a reliable disperser of certain plant families/genera if: (a) fruits of these plant families/genera are represented in the diets of most of the species of that frugivore, (b) these are consumed by the frugivore genus across different kinds of habitats, and (c) these fruits feature among the yearly staples and preferred fruits in the diets of the frugivore genus. Using this framework, we reviewed frugivory by the genus Macaca across Asia to assess its spatial reliability as seed dispersers. We found that the macaques dispersed the seeds of 11 plant families and five plant genera including at least 82 species across habitats. Differences in fruit consumption/preference between different groups of macaques were driven by variation in plant community composition across habitats. We posit that it is essential to maintain viable populations of macaques across their range and keep human interventions at a minimum to ensure that they continue to reliably disperse the seeds of a broad range of plant species in the Anthropocene. We further suggest that this framework be used for assessing the spatial reliability of other taxonomic groups as seed dispersers.  相似文献   

4.
The interaction between granivorous scatterhoarding mammals and plants is a conditional mutualism: scatterhoarders consume seeds (acting as predators), but the movement of seed by scatterhoarders may contribute to dispersal (acting as mutualists). Understanding the ecological factors that shape this relationship is highly relevant in anthropogenically disturbed tropical forests where large‐bodied frugivores are extirpated. In such forests, large‐seeded trees that once depended on these frugivores for dispersal may now only have scatterhoarders as prospective dispersers. We studied Carapa oreophila (Meliaceae) in an Afromontane forest, to test the hypotheses that the proportion of seeds immediately consumed or hoarded (dispersed) would vary over a disturbance gradient. Temporal replication also afforded exploration of how habitat effects might vary with food availability. Using a Bayesian framework, we demonstrate that seeds were more likely to be hoarded in less disturbed forest, irrespective of temporal variation in food abundance. In contrast, forest disturbance only appeared to increase seed predation in temporal replicates that coincided with sustained food availability. These results highlight the potential variability in the dynamics between plants and scatterhoarders over fine temporal scales, elucidating possible ecological scenarios where scatterhoarders might act as mutualists (contributing positively to plant recruitment). Our study also fills important knowledge gaps about the importance of scatterhoarders as dispersers in tropical forests depleted of large‐bodied frugivores, particularly in Africa where scatterhoarding mutualisms have not been extensively studied.  相似文献   

5.
Most tropical plants produce fleshy fruits that are dispersed primarily by vertebrate frugivores. Behavioral disparities among vertebrate seed dispersers could influence patterns of seed distribution and thus forest structure. This study investigated the relative importance of arboreal seed dispersers and seed predators on the initial stage of forest organization–seed deposition. We asked the following questions: (1) To what degree do arboreal seed dispersers influence the species richness and abundance of the seed rain? and (2) Based on the plant species and strata of the forest for which they provide dispersal services, do arboreal seed dispersers represent similar or distinct functional groups? To answer these questions, seed rain was sampled for 12 months in the Dja Reserve, Cameroon. Seed traps representing five percent of the crown area were erected below the canopies of 90 trees belonging to nine focal tree species: 3 dispersed by monkeys, 3 dispersed by large frugivorous birds, and 3 wind‐dispersed species. Seeds disseminated by arboreal seed dispersers accounted for ca 12 percent of the seeds and 68 percent of the seed species identified in seed traps. Monkeys dispersed more than twice the number of seed species than large frugivorous birds, but birds dispersed more individual seeds. We identified two distinct functional dispersal groups, one composed of large frugivorous birds and one composed of monkeys, drop dispersers, and seed predators. These groups dispersed plants found in different canopy strata and exhibited low overlap in the seed species they disseminated. We conclude it is unlikely that seed dispersal services provided by monkeys could be compensated for by frugivorous birds in the event of their extirpation from Afrotropical forests.  相似文献   

6.
Zoochory is the most common mode of seed dispersal for the majority of plant species in the tropics. Based on the assumption of tight plant-animal interactions several hypotheses have been developed to investigate the origin of life history traits of plant diaspores and their dispersers, such as species-specific co-evolution, the low/high investment model (low investment in single fruits but massive fruiting to attract many different frugivores versus high investment in single fruits and fruit production for extended periods to provide food for few frugivores), and the evolution of syndromes which represent plant adaptations to disperser groups (e.g. birds, mammals, mixed). To test these hypotheses the dispersal strategies of 34 tree species were determined in the littoral forest of Sainte Luce (SE-Madagascar) with the help of fruit traps and tree watches. The impact of fruit consumers on the seeds was determined based on detailed behavioral observations. Phenological, morphological and biochemical fruit traits from tree species were measured to look for co-variation with different types of dispersal. No indication for species-specific co-evolution could be found nor any support for the low/high investment model. However dispersal syndromes could be distinguished as diaspores dispersed by birds, mammals or both groups (mixed) differ in the size of their fruits and seeds, fruit shape, and seed number, but not in biochemical traits. Five large-seeded tree species seem to depend critically on the largest lemur, Eulemur fulvus collaris, for seed dispersal. However, this does not represent a case of tight species-specific co-evolution. Rather it seems to be the consequence of the extinction of the larger frugivorous birds and lemurs which might also have fed on these large fruits. Nevertheless these interactions are of crucial importance to conserve the integrity of the forest.  相似文献   

7.
  1. Bushmeat hunting has reduced population sizes of large frugivorous vertebrates throughout the tropics, thereby reducing the dispersal of seeds. This is believed to affect tree population dynamics, and therefore community composition, because the seed dispersal of large‐seeded trees depends upon large‐bodied vertebrates.
  2. We report on a long‐running study of the effect of defaunation on a tropical tree community. In three censuses over 11 years, we compared sapling recruitment between a hunted and a nonhunted site, which are nearby and comparable to one another, to determine the extent to which species composition has changed through time following defaunation. We expected to find a reduced abundance of tree species that rely on large frugivores for dispersal at the hunted site and altered community structure as a consequence.
  3. Although community composition at the hunted site diverged from that at the nonhunted site, the changes were independent of dispersal syndrome, with no trend toward a decline in species that are dispersed by large, hunted vertebrates. Moreover, the loss of large‐bodied dispersers did not generate the changes in tree community composition that we hypothesized. Some species presumed to rely on large‐bodied frugivores for dispersal are effectively recruiting despite the absence of their dispersers.
  4. Synthesis: The presumption that forests depleted of large‐bodied dispersers will experience rapid, directional compositional change is not fully supported by our results. Altered species composition in the sapling layer at the hunted site, however, indicates that defaunation may be connected with changes to the tree community, but that the nature of these changes is not unidirectional as previously assumed. It remains difficult to predict how defaunation will affect tree community composition without a deeper understanding of the driving mechanisms at play.
  相似文献   

8.
Granivorous rodents have been traditionally regarded as antagonistic seed predators. Agoutis (Dasyprocta spp.), however, have also been recognized as mutualistic dispersers of plants because of their role as scatter-hoarders of seeds, especially for large-seeded species. A closer look shows that such definitions are too simplistic for these Neotropical animals because agoutis can influence plant communities not only through seed dispersal of large seeds but also through predation of small seeds and seedlings, evidencing their dual role. Herein, we summarize the literature on plant–agouti interactions, decompose agouti seed dispersal into its quantitative and qualitative components, and discuss how environmental factors and plant traits determine whether these interactions result in mutualisms or antagonisms. We also look at the role of agoutis in a community context, assessing their effectiveness as substitutes for extinct megafaunal frugivores and comparing their ecological functions to those of other extant dispersers of large seeds. We also discuss how our conclusions can be extended to the single other genus in the Dasyproctidae family (Myoprocta). Finally, we examine agoutis’ contribution to carbon stocks and summarize current conservation threats and efforts. We recorded 164 interactions between agoutis and plants, which were widespread across the plant phylogeny, confirming that agoutis are generalist frugivores. Seed mass was a main factor determining seed hoarding probability of plant species and agoutis were found to disperse larger seeds than other large-bodied frugivores. Agoutis positively contributed to carbon storage by preying upon seeds of plants with lower carbon biomass and by dispersing species with higher biomass. This synthesis of plant–agouti interactions shows that ecological services provided by agoutis to plant populations and communities go beyond seed dispersal and predation, and we identify still unanswered questions. We hope to emphasise the importance of agoutis in Neotropical forests.  相似文献   

9.
Seed dispersal is a fundamental process that is highly threatened by the rapid decline of large-bodied frugivores worldwide. The Brazilian Cerrado, the largest savanna in the world, represents an ideal site for investigating seed dispersal because of its biodiversity, environmental challenges, and knowledge shortfalls. We performed a systematic literature review to analyze the seed dispersal network in the Cerrado and the potential impacts of the defaunation of large-bodied frugivores on it. We considered network metrics, calculated the defaunation index of the frugivore assemblage, and compared traits among different fruit-sized plants and their respective dispersers in the network. We retrieved 1565 interactions involving 193 plant species and 270 animal species. Results show that the Cerrado seed dispersal network is slightly nested and considerably modular, dominated by small- to medium-sized generalist species, such as passerines, marsupials, and mesocarnivores. Nonetheless, large-bodied frugivores like the lowland tapir have a key role in the network due to their great foraging and network integration capacity. The Cerrado frugivore assemblage is moderately defaunated, with possible effects in its interactions with large-fruited plants. The Cerrado's defaunation and functional loss of large vertebrates deserve urgent attention to further understand the impacts on seed dispersal mechanisms and ecosystem functioning.  相似文献   

10.
Pollination and seed dispersal determine the spatial pattern of gene flow in plant populations and, for those species relying on pollinators and frugivores as dispersal vectors, animal activity plays a key role in determining this spatial pattern. For these plant species, reported dispersal patterns are dominated by short-distance movements with a significant amount of immigration. However, the contribution of seed and pollen to the overall contemporary gene immigration is still poorly documented for most plant populations. In this study we investigated pollination and seed dispersal at two spatial scales in a local population of Prunus mahaleb (L.), a species pollinated by insects and dispersed by frugivorous vertebrates. First, we dissected the relative contribution of pollen and seed dispersal to gene immigration from other parts of the metapopulation. We found high levels of gene immigration (18.50%), due to frequent long distance seed dispersal events. Second, we assessed the distance and directionality for pollen and seed dispersal events within the local population. Pollen and seed movement patterns were non-random, with skewed distance distributions: pollen tended moved up to 548 m along an axis approaching the N-S direction, and seeds were dispersed up to 990 m, frequently along the SW and SE axes. Animal-mediated dispersal contributed significantly towards gene immigration into the local population and had a markedly nonrandom pattern within the local population. Our data suggest that animals can impose distinct spatial signatures in contemporary gene flow, with the potential to induce significant genetic structure at a local level.  相似文献   

11.
We investigated seed dispersal by two sympatric mustelid species, the Japanese marten (Martes melampus) and Japanese weasel (Mustela itatsi), along an intercity forest path in western Tokyo, central Japan, from Jul 2007 to Jul 2008. We aimed to investigate the effect of food/habitat preference of these mustelids (martens are semi-arboreal frugivores while weasels are terrestrial carnivores) on their seed dispersal characteristics, which determine their efficacy as seed dispersers. In total, we analyzed 478 fecal samples collected from the two mustelids (Nmarten = 381, Nweasel = 97). The proportions of feces containing seeds for martens and weasels were 81.4% and 55.7%, respectively. The number of plant species whose seeds were found within the feces were 28 and 17, respectively. Almost all seeds within feces of both mustelids were intact. The number of plant species whose seeds were found within a single fecal sample ranged from one to four, but no significant difference was detected between the two mustelids. However, marten feces contained a significantly greater number of seeds of most plant species as well as total number of seeds than did weasel feces. The numbers of plant species and seeds represented in marten feces varied seasonally, but those represented in weasel feces did not. Our findings suggest the possibility that both mustelids act in some ways as seed dispersers, although martens seem to disperse a greater diversity and total amount of seeds.  相似文献   

12.
Following defaunation, the loss of interactions with mutualists such as pollinators or seed dispersers may be compensated through increased interactions with remaining mutualists, ameliorating the negative cascading impacts on biodiversity. Alternatively, remaining mutualists may respond to altered competition by reducing the breadth or intensity of their interactions, exacerbating negative impacts on biodiversity. Despite the importance of these responses for our understanding of the dynamics of mutualistic networks and their response to global change, the mechanism and magnitude of interaction compensation within real mutualistic networks remains largely unknown. We examined differences in mutualistic interactions between frugivores and fruiting plants in two island ecosystems possessing an intact or disrupted seed dispersal network. We determined how changes in the abundance and behavior of remaining seed dispersers either increased mutualistic interactions (contributing to “interaction compensation”) or decreased interactions (causing an “interaction deficit”) in the disrupted network. We found a “rich‐get‐richer” response in the disrupted network, where remaining frugivores favored the plant species with highest interaction frequency, a dynamic that worsened the interaction deficit among plant species with low interaction frequency. Only one of five plant species experienced compensation and the other four had significant interaction deficits, with interaction frequencies 56–95% lower in the disrupted network. These results do not provide support for the strong compensating mechanisms assumed in theoretical network models, suggesting that existing network models underestimate the prevalence of cascading mutualism disruption after defaunation. This work supports a mutualist biodiversity‐ecosystem functioning relationship, highlighting the importance of mutualist diversity for sustaining diverse and resilient ecosystems.  相似文献   

13.
Mistletoes are dispersed primarily by frugivorous birds and have highly aggregated distributions at multiple scales. Mistletoe specialist frugivores have been found to intensify infections within infected hosts and stands, and this is considered the most likely mechanism underlying clumped mistletoe distributions at these scales. How these patchy infections first develop and whether seed dispersers also contribute to aggregated mistletoe distributions at landscape and regional scales have not been evaluated. Here we predict the mistletoe seed shadow of a dietary generalist (spiny‐cheeked honeyeater Acanthagenys rufogularis Aves: Meliphagidae), by combining our observations of movements via radio telemetry with previous data on gut passage times to estimate seed dispersal curves for individual birds. There was considerable variation in movements and inferred seed dispersal between individuals, with non‐breeding birds predicted to regularly transport Amyema quandang (Santalales: Loranthaceae) seeds up to 700 m; well beyond the boundaries of an existing mistletoe infection. As the first work to consider explicitly the distance component of mistletoe seed dispersal by dietary generalists, this study poses further questions about the relative seed dispersal roles of dietary generalists and mistletoe specialists. Moreover, our findings highlight considerable intraspecific variation in movement and foraging behaviour, suggesting gender and reproductive status of birds should be considered explicitly when quantifying seed dispersal services.  相似文献   

14.
Ellen Andresen 《Biotropica》2002,34(2):261-272
The effectiveness of a seed disperser depends on the quantity and quality of dispersal. The quality of dispersal depends in large part on factors that affect the post–dispersal fate of seeds, and yet this aspect of dispersal quality is rarely assessed. In the particular case of seed dispersal through endozoochory, the defecation pattern produced has the potential of affecting the fate of dispersed seeds and consequently, dispersal quality and effectiveness. In this study, I assessed the effects of dung presence and dung/seed densities on seed predation by rodents and secondary dispersal by dung beetles. In particular, I compared seed fates in clumped defecation patterns, as those produced by howler monkeys, with seed fates in scattered defecation patterns, as those produced by other frugivores. I also determined the prevalence of red howler monkeys (Alouatta seniculus) as seed dispersers at the plant community level in Central Amazonia by determining the number of species they dispersed in a 25–month period. I found that dung presence and amount affected rodent and dung beetle behavior. Seed predation rates were higher when dung was present, and when it was in higher densities. The same number of seeds was buried by dung beedes, in dumped versus scattered defecation patterns, but more seeds were buried when they were inside large dung–piles versus small piles. Seed density had no effect on rodent or dung beetle behavior. Results indicate that caution should be taken when categorizing an animal as a high or low quality seed disperser before carefully examining the factors that affect the fate of dispersed seeds. Red howler monkeys dispersed the seeds of 137 species during the study period, which is the highest yet reported number for an Alouatta species, and should thus be considered highly prevalent seed dispersers at the plant community level in Central Amazonian terra firme rain forests.  相似文献   

15.
Large vertebrates are important elements of mutualistic interactions and provide positive impacts on plant population and community dynamics. Despite the increasing interest on vertebrate frugivory we are still not able to disentangle the real contribution of seed dispersal to Neotropical forest functioning. Consuming fruits does not imply effective seed dispersal and many variables, such as seed size and animal diet, may influence the outcome of plant-animal interactions. Here, we performed a comprehensive literature search on seed dispersal by Neotropical vertebrates (with a focus on primates) to closely approach their role as seed dispersers, hypothesizing frugivory degree and seed size as main drivers of fruit handling behavior and diversity of dispersed seeds. We found that the great majority of seeds manipulated by Neotropical primates, with exception to the seed predators pitheciins, were swallowed and passed intact through their gut. Larger seeds (>12 mm) tended of being ingested exclusively by primates and other large vertebrates, such as tapirs and peccaries. Furthermore, primate feeding guild had a great influence on the richness and sizes of seeds dispersed, as primarily frugivores dispersed more species and had higher probabilities of ingesting larger seeds when compared to other feeding guilds. Organizing available knowledge and filling the main knowledge gaps allowed us to validate common sense assumptions and ultimately draw new conclusions about the role played by primates together with other major frugivores in Neotropical forests.  相似文献   

16.
Although seed dispersal is considered to be a key process determining the spatial structure and spread of non-native plant populations, few studies have explicitly addressed the link between dispersal vector behaviour, seed distribution and seedling recruitment to gain insight into the process of exotic species invasion within a fragmented landscape context. The present study analyses the relationship between avian frugivory and spatial patterns of seed deposition and seedling recruitment for an expanding population of the invasive Prunus serotina in a hedgerow network landscape in Flanders, Belgium. We quantified fruit production, observed frugivores, and determined the spatial distribution of bird droppings and P. serotina seedlings. A relatively diverse assemblage of frugivores visited P. serotina seed trees, with Columba palumbus and Turdus merula being by far the most important dispersers. Landscape structure strongly affected dispersal vector behaviour and the spatial distribution of perching birds, droppings and seedlings. Frugivorous birds non-randomly dispersed seeds to perching sites and an association between perching birds, seed deposition and seedling recruitment was found. Results indicate that landscape structure contributes to non-random seed deposition of P. serotina by common local frugivores. Cutting the larger seed trees is proposed as the most feasible measure to slow down the invasion rate.  相似文献   

17.
We studied avian dispersal of seeds from the hemiparasitic mistletoe Plicosepalus acaciae (Loranthaceae) to its tree hosts Acacia raddiana and A. tortilis in the Syrian–African Rift (Arava) valley, Israel. The Yellow-vented Bulbul (Pycnonotus xanthopygos) was the sole avian visitor observed feeding on mistletoe fruits. Bulbuls consumed mistletoe fruits whenever they were available, but the fruits only constituted a significant portion of the diet (71% of foraging attempts) when they were most abundant. These birds are potentially good dispersal vectors of P. acaciae because they swallowed the fruit whole and defecated viable seeds that were covered in a viscid pulp, which allowed the seeds to adhere to substrates when voided. In addition, bulbuls spent a large proportion (66–93%) of total observation time perched in Acacia trees, allowing for directed dispersal. Ephemeral river valleys (wadis) with high mistletoe infection were adjacent to those containing no infections, demonstrating that mistletoe dispersal is common within, but not among wadis. This is consistent with the flight behaviour in bulbuls, which do not typically move among wadis. We combined data on bulbul movements between Acacia trees with transit times of mistletoe seeds to create a hypothetical seed shadow as a function of distance from the parent mistletoe plant. Because they are directed dispersers, the movement patterns of bulbuls may explain the current distribution of P. acaciae in the Arava valley.  相似文献   

18.
Ana Mellado  Regino Zamora 《Oecologia》2014,176(1):139-147
Mistletoes constitute instructive study cases with which to address the role of generalist consumers in the study of plant–animal interactions. Their ranges of safe sites for recruitment are among the most restricted of any plant; therefore, frugivores specializing in mistletoe have been considered almost indispensable for the seed dispersal of these parasitic plants. However, the absence of such specialists in numerous regions inhabited by many mistletoe species raises the question of whether unspecialized vectors may successfully disperse mistletoe seeds to narrowly defined safe sites. Using the European mistletoe Viscum album subsp. austriacum as a study case, we recorded a broad range of 11 bird species that disperse mistletoe seeds. For these species, we studied the mistletoe-visitation rate and feeding behavior to estimate the quantity component of dispersal effectiveness, and the post-foraging microhabitat use, seed handling, and recruitment probabilities of different microhabitats as a measure of the quality component of effectiveness. Both endozoochory and ectozoochory are valid dispersal mechanisms, as the seeds do not need to be ingested to germinate, increasing seed-dispersal versatility. Thrushes were the most effective dispersers, although they were rather inefficient, whereas small birds (both frugivores and non-frugivores) offered low-quantity but high-quality services for depositing seeds directly upon safe sites. As birds behave similarly on parasitized and non-parasitized hosts, and vectors have broad home ranges, reinfection within patches and the colonization of new patches are ensured by an ample assemblage of generalist birds. Thus, a parasitic plant requiring precision in seed dispersal can rely on unspecialized dispersers.  相似文献   

19.
Aim We studied how the abundance of the highly invasive fruit‐bearing tree Miconia calvescens DC. influences seed dispersal networks and the foraging patterns of three avian frugivores. Location Tahiti and Moorea, French Polynesia. Methods Our study was conducted at six sites which vary in the abundance of M. calvescens. We used dietary data from three frugivores (two introduced, one endemic) to determine whether patterns of fruit consumption are related to invasive tree abundance. We constructed seed dispersal networks for each island to evaluate how patterns of interaction between frugivores and plants shift at highly invaded sites. Results Two frugivores increased consumption of M. calvescens fruit at highly invaded sites and decreased consumption of other dietary items. The endemic fruit dove, Ptilinopus purpuratus, consumed more native fruit than either of the two introduced frugivores (the red‐vented bulbul, Pycnonotus cafer, and the silvereye, Zosterops lateralis), and introduced frugivores showed a low potential to act as dispersers of native plants. Network patterns on the highly invaded island of Tahiti were dominated by introduced plants and birds, which were responsible for the majority of plant–frugivore interactions. Main conclusions Shifts in the diet of introduced birds, coupled with reduced populations of endemic frugivores, caused differences in properties of the seed dispersal network on the island of Tahiti compared to the less invaded island of Moorea. These results demonstrate that the presence of invasive fruit‐bearing plants and introduced frugivores can alter seed dispersal networks, and that the patterns of alteration depend both on the frugivore community and on the relative abundance of available fruit.  相似文献   

20.
Understanding the mutualisms between frugivores and plants is essential for developing successful forest management and conservation strategies, especially in tropical rainforests where the majority of plants are dispersed by animals. Gibbons are among the most effective seed dispersers in South East Asia's tropical forests, but are also one of the highly threatened arboreal mammals in the region. Here we studied the seed dispersal of the Pacific walnut (Dracontomelon dao), a canopy tree which produces fruit that are common in the diet of the endangered southern yellow-cheeked crested gibbon (Nomascus gabriellae). We found that gibbons were the most effective disperser for this species; they consumed approximately 45% of the fruit crop, which was four times more than that consumed by macaques – the only other legitimate disperser. Gibbons tracked the temporal (but not spatial) abundance of ripe fruits, indicating this fruit was a preferred species for the gibbon. Both gibbons and macaques dispersed the majority (>90%) of the seeds at least 20 m away from parent crowns, with mean dispersal distances by gibbons measuring 179.3 ± 98.0 m (range: 4–425 m). Seeds defecated by gibbons germinated quicker and at greater rates than seeds spat by macaques, or in undispersed fruits. Gibbon-dispersed seeds were also more likely to be removed by unknown seed predators or unknown secondary dispersers. Overall, gibbons play a key role in the regeneration of the Pacific walnut. Our findings have significant implications both for the management of the Pacific walnut tree dominating tropical rainforest as well as the reintroduction program of the Southern yellow-cheeked crested gibbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号