首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   5篇
  2023年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   9篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   2篇
  2008年   8篇
  2007年   10篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1984年   1篇
  1979年   4篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   3篇
  1970年   3篇
  1968年   1篇
排序方式: 共有123条查询结果,搜索用时 765 毫秒
1.
ABA-regulated promoter activity in stomatal guard cells   总被引:4,自引:0,他引:4  
CDeT6-19 is an ABA-regulated gene which has been isolated from Craterostigma plantagineum . The CDeT6-19 gene promoter has been fused to the β- glucuronidase reporter gene ( GUS ) and used to stably transform Arabidopsis thaliana and Nicotiana tabacum . This construct has been shown to be expressed in stomatal guard cells and often in the adjacent epidermal cells of both species in response to both exogenous ABA and drought stress. These results indicate that the stomatal guard cell is competent to relay an ABA signal to the nucleus. In contrast GUS expression directed by the promoter from a predominantly seed-specific, ABA-regulated gene, Em , or the promoter from the ABA-regulated CDeT27-45 gene is not detectable in the epidermal or guard cells of tobacco or Arabidopsis in response to ABA. The fact that not all ABA-regulated gene promoters are active in stomatal guard cells suggests that effective transduction of the signal is dependent upon particular regions within the gene promoter or that guard cells lack all or part of the specific transduction apparatus required to couple the ABA signal to these promoters. This suggests that there are multiple ABA stimulus response coupling pathways. The identification of a regulatory sequence from an ABA-induced gene which is expressed in stomatal guard cells creates the possibility of examining the role of Ca2+ and other second messengers in ABA-induced gene expression.  相似文献   
2.

Freshwater wetlands are a key component of the global carbon cycle. Wet–dry tropics wetlands function as wet-season carbon sinks and dry-season carbon sources with low aquatic metabolism controlled by predictably seasonal, yet magnitude-variable flow regimes and inundation patterns. However, these dynamics have not been adequately quantified in Australia’s relatively unmodified wet–dry tropics freshwater wetlands. A baseline understanding is required before analysis of land-use or climate change impacts on these aquatic ecosystems can occur. This study characterises geomorphology and sedimentology within a seasonally connected wet–dry tropics freshwater wetland system at Kings Plains, Queensland, Australia, and quantifies soil carbon stocks and wet- and dry-season aquatic metabolism. Soil carbon stocks derived from loss-on-ignition on samples to 1 m depth were 51.5?±?7.8 kg C m?2, higher than other wet–dry tropics wetlands globally, with potential for long-term retention at greater depths. Gross primary productivity of phytoplankton (GPP) and planktonic respiration (PR) measured through biological oxygen demand bottle experiments in the water column of sediment inundated under laboratory conditions show overall low GPP and PR in both wet- and dry-season samples (all wetland samples were heterotrophic with GPP/PR?<?1). Despite the short-term dominance of aquatic respiration processes leading to net release of carbon in the water column under these conditions, there is appreciable long-term storage of carbon in sediment in the Kings Plains wetlands. This demonstrates the importance of wet–dry-tropics wetland systems as hotspots of carbon sequestration, locally, regionally and globally, and consideration should be given to their conservation and management in this context.

  相似文献   
3.
Many food webs are affected by bottom‐up nutrient addition, as additional biomass or productivity at a given trophic level can support more consumers. In turn, when prey are abundant, predators may converge on the same diets rather than partitioning food resources. Here, we examine the diets and habitat use of predatory and omnivorous birds in response to biosolids amendment of northern grasslands used as grazing range for cattle in British Columbia, Canada. From an ecosystem management perspective, we test whether dietary convergence occurred and whether birds preferentially used the pastures with biosolids. Biosolids treatments increased Orthoptera densities and our work occurred during a vole (Microtus spp.) population peak, so both types of prey were abundant. American Kestrels (Falco sparverius) consumed both small mammals and Orthoptera. Short‐eared Owls (Asio flammeus) and Long‐eared owls (Asio otus) primarily ate voles (>97% of biomass consumed) as did Northern Harriers (Circus hudsonius, 88% vole biomass). Despite high dietary overlap, these species had minimal spatial overlap, and Short‐eared Owls strongly preferred pastures amended with biosolids. Common Ravens (Corvus corax), Black‐billed Magpies (Pica hudsonia), and American Crows (Corvus brachyrhynchos) consumed Orthoptera, Coleoptera, vegetation, and only a few small mammals; crows avoided pastures with biosolids. Thus, when both insect and mammalian prey were abundant, corvids maintained omnivorous diets, whereas owls and Harriers specialized on voles. Spatial patterns were more complex, as birds were likely responding to prey abundance, vegetation structure, and other birds in this consumer guild.  相似文献   
4.
Business‐to‐business (B2B) electronics account for a significant volume of the electrical and electronic equipment (EEE) put on the market. Very little B2B waste electrical and electronic equipment (WEEE) is reported as collected in the European Union (EU) in compliance with the WEEE Directive, which uses the policy principle of extended producer responsibility (EPR) to ensure that WEEE is managed correctly. This presents a barrier to parties looking for access to the waste. Company practice dictates the channels into which B2B WEEE flows following primary use. This article presents a study that engaged with company actors directly to get a better understanding of business information technology (IT) EEE asset management. Data were collected to determine the barriers current practice could present to the collection of B2B IT EEE at end of life and the implications of these for the development of policies and strategies for EPR. A questionnaire was developed and data were gathered from organizations in three EU countries—the United Kingdom, Germany, and France—stratified by size. Some notable findings were that there are several routes by which end‐of‐life B2B WEEE can flow. The recycling and refurbishment of B2B IT units at end of use was shown to be commonplace, but it is likely that these units enter streams where they are not reported. The actors disposing of their units did not have information on the management or disposition of these streams. It is concluded that to achieve the goals of EPR for B2B IT WEEE, the networks and the operational practices of these streams need to be better understood when developing strategies and policies.  相似文献   
5.
During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell–cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion.  相似文献   
6.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
7.
8.
As for all proteins, G protein-coupled receptors (GPCRs) undergo synthesis and maturation within the endoplasmic reticulum (ER). The mechanisms involved in the biogenesis and trafficking of GPCRs from the ER to the cell surface are poorly understood, but they may involve interactions with other proteins. We have now identified the ER chaperone protein calnexin as an interacting protein for both D(1) and D(2) dopamine receptors. These protein-protein interactions were confirmed using Western blot analysis and co-immunoprecipitation experiments. To determine the influence of calnexin on receptor expression, we conducted assays in HEK293T cells using a variety of calnexin-modifying conditions. Inhibition of glycosylation either through receptor mutations or treatments with glycosylation inhibitors partially blocks the interactions with calnexin with a resulting decrease in cell surface receptor expression. Confocal fluorescence microscopy reveals the accumulation of D(1)-green fluorescent protein and D(2)-yellow fluorescent protein receptors within internal stores following treatment with calnexin inhibitors. Overexpression of calnexin also results in a marked decrease in both D(1) and D(2) receptor expression. This is likely because of an increase in ER retention because confocal microscopy revealed intracellular clustering of dopamine receptors that were co-localized with an ER marker protein. Additionally, we show that calnexin interacts with the receptors via two distinct mechanisms, glycan-dependent and glycan-independent, which may underlie the multiple effects (ER retention and surface trafficking) of calnexin on receptor expression. Our data suggest that optimal receptor-calnexin interactions critically regulate D(1) and D(2) receptor trafficking and expression at the cell surface, a mechanism likely to be of importance for many GPCRs.  相似文献   
9.
10.
Bone is a dynamic tissue which, through the process of bone remodeling in the mature skeleton, renews itself during normal function and adapts to mechanical loads. It is, therefore, important to understand the effect of remodeling on the mechanical function of bone, as well as the effect of the inherent time lag in the remodeling process. In this study, we develop a constitutive model for bone remodeling which includes a number of relevant mechanical and biological processes and use this model to address differences in the remodeling behavior as a volume element of bone is placed in disuse or overload. The remodeling parameters exhibited damped oscillatory behavior as the element was placed in disuse, with the amplitude of the oscillations increasing as the severity of disuse increased. In overload situations, the remodeling parameters exhibited critically sensitive behavior for loads beyond a threshold value. These results bear some correspondence to experimental findings, suggesting that the model may be useful when examining the importance of transient responses for bone in disuse, and for investigating the role fatigue damage removal plays in preventing or causing stress fractures. In addition, the constitutive algorithm is currently being employed in finite element simulations of bone adaptation to predict important features of the internal structure of the normal femur, as well as to study bone diseases and their treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号