首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
观赏羽衣甘蓝高频再生体系的建立   总被引:3,自引:0,他引:3  
观赏羽衣甘蓝是一种赏食兼用的耐冻优良景观植物.为了通过基因工程手段赋予其抗虫性,并进一步提高其低温耐受性,获得新的抗性种质,本研究以优良育种品系为试材,详细探讨了影响离体培养不定芽再生的因素,建立了高效再生体系.以8份不同类型羽衣甘蓝基因型的带柄子叶、子叶、下胚轴为外植体,研究了不同基因型、不同外植体、不同的培养基激素浓度配比及添加AgNO3对不定芽诱导的影响.结果表明:无论基因型及使用的培养基,带柄子叶均为最佳外植体;不同的基因型、不同外植体其最佳的芽诱导培养基不同;筛选出两份材料,其带柄子叶分别在L6(MS+6-BA 1.0 mg/L+NAA 0.1mg/L)及L3(MS+6-BA 1.5 mg/L)培养基中不定芽诱导率为100%,下胚轴诱导率最高也能达88.33%;培养基中添加4 mg/L AgNO3不利于羽衣甘蓝的不定芽诱导;再生株生根以MS+NAA 0.1 mg/L效果好,生根率可达100%.  相似文献   

2.
提高榨菜离体培养植株再生频率   总被引:11,自引:0,他引:11  
采用榨菜“浙桐1号”品种为材料,以MS为基本培养基,通过对不同植物生长调节剂的组合和不同外植体等主要因素的筛选,大幅度提高了榨菜离体培养植株再生频率。结果表明,2mg/L6.BA 0.2mg/L2,4-D的组合较为适宜,其不定芽再生频率可达50%,且外植体以下胚轴为好:而CPPU和2,4-D的适宜组合为1.5mg/L 0.2mg/L,其不定芽再生频率高达66.67%,最适外植体为带柄子叶。同时,研究结果显示,添加0.25~1mg/L的GA,对榨菜已分化的不定芽的伸长有抑制作用;子叶柄和下胚轴外植体的分化具有极性现象。  相似文献   

3.
不同辣椒材料离体再生及其影响因素的研究   总被引:1,自引:0,他引:1  
以8个辣椒(Capsicum annuumL.)纯系为材料,对不同材料、外植体种类和激素组合等因素对辣椒植株离体再生的影响进行了研究。结果表明,较高的6-BA/IAA值有利于辣椒外植体的分化再生,而6-BA/IAA值较低则适合于再生芽的伸长;不同辣椒材料的再生能力差别较大;辣椒带柄子叶再生能力比下胚轴强,是较好的外植体材料;12~16 d苗龄的外植体分化频率较高;在供试的8个辣椒材料中‘2096’、‘B4’和‘B7’的再生能力较强。高频率的不定芽分化培养基为MB(MS无机成分 B5有机成分) 0.8 mg/L IAA 5.0 mg/L 6-BA 4.0 mg/L Ag-NO3;不定芽伸长的培养基为MB 0.8 mg/L IAA 2.0 mg/L 6-BA 2.0 mg/L GA3 4.0 mg/L AgNO3;高效生根诱导培养基为MB 0.2 mg/L IAA 0.1 mg/L NAA。  相似文献   

4.
甘蓝型油菜(Brassica napus L.)皖油14具柄子叶为外植体,进行安徽省地方性油菜品系离体培养再生植株体系的研究.通过不同浓度的激素组合实验,结果表明:在愈伤组织诱导中,以MS-C7(MS 2 mg/L6-BA 0.2mg/L NAA 0.25 mg/2,4-D 7.5 mg/L AgNO3)培养基的出愈率最高,且可产生大量绿色芽点;以MS-B3(MS 1.0 mg/L6-BA 0.1 mg/L NAA 7.5 mg/L AgNO3)培养基的芽苗分化率最高,可分化出丛生的不定芽;生根培养基MS 0.1 mg/L NAA 7.5 mg/L AgNO3的生根率达100%.7.5 mg/L的AgNO3可以明显减少愈伤组织的褐化,良好的空气流通可以减少玻璃苗的形成.初步建立了皖油14品系的高频再生植株体系.  相似文献   

5.
以辣椒(Capsicum annuum L)品种"哈椒一号"为试材,选用无菌苗子叶、下胚轴和带柄子叶为外植体,采用正交设计探讨不同外植体、激素组合和AgNO_2浓度等因素对不定芽分化的影响,筛选出了三种外植体不定芽诱导的最适培养基。试验结果表明:在不定芽的分化中,6-BA与IAA相配合使叶片不定芽分化频率明显提高,BA/IAA的比例对不定芽分化有明显影响。并且6-BA 6 mg/L+IAA 2 mg/L的组合能够达到最高的诱导率。AgNO_3不但显著提高了不定芽诱导的频率,并且还缩短了不定芽的发生时间。另外,三种外植体的不定芽诱导率,带柄子叶最高,其次是子叶,下胚轴最差。最适不定芽培养基:MS+6-BA 6 mg/L+IAA 2 mg/L+AgNO_2 4 mg/L,pH 5.8,最高不定芽分化率达88.2%。  相似文献   

6.
以甘蓝型油菜野油19号的下胚轴和带柄子叶为外植体,研究其下胚轴和带柄子叶在不同浓度激素配比下的分化率及再生频率的变化。该品系的油菜下胚轴和带柄子叶在1.5 mg/L的2,4-D中预培养4 d后,转入分化培养基中,其愈伤组织形成早,发生快,再生频率和分化频率均较高。其中,下胚轴转入MS+3 mg/L 6-BA+0.1 mg/L NAA培养基中的分化率和再生频率最高,再生频率达到86.67%;带柄子叶外植体的再生频率要比下胚轴的再生频率低,在MS+4 mg/L 6-BA+0.3 mg/L NAA的分化培养基中芽的再生频率为46.67%。本研究初步建立了甘蓝型油菜野油19号的高频率再生体系。  相似文献   

7.
以彩色大白菜子叶为外植体,研究不同激素配比和AgNO3对不定芽再生的影响。结果表明:单独附加细胞分裂素(6-BA或TDZ)的MS培养基,不能诱导子叶不定芽分化;而同时附加生长素(NAA)和细胞分裂素(6-BA或TDZ),不定芽的再生频率提高,最高为15%;AgNO3与细胞分裂素及生长素配合使用,能大幅度提高子叶不定芽的再生频率,提高率最高达42.5%。与6-BA相比,TDZ对不定芽再生的效果更好。当TDZ浓度为0.05mg/L、NAA为0.3mg/L、AgNO3为8mg/L时,产生丛状芽数目最多,再生率最高,达50%。  相似文献   

8.
以黄花芥蓝的子叶、子叶柄和带柄子叶为外植体,在不同的BAP和NAA浓度的组合诱导下,获得再生植株.研究结果表明,在测试激素浓度下,带柄子叶为外植体的再生率最一致,其最适BAP和NAA浓度分别为3.0mg/L和1.0mg/L;较低浓度的BAP和NAA有利于子叶再生,其最适BAP和NAA浓度分别为2.0mg/L和1.0mg/L;子叶柄只有在较高的BAP和NAA浓度下才能再生,但再生率依然很低.  相似文献   

9.
不结球白菜离体培养与植株再生体系研究   总被引:8,自引:2,他引:6  
以4个不结球白菜品种为试材,对外植体、苗龄、激素的组配、培养基中琼脂和AgNO3浓度等再生因素进行了筛选优化,并探讨了抗坏血酸(AsA)对不结球白菜不定芽分化的影响。结果显示:以4~7d苗龄的带柄子叶为外植体诱导不定芽效果较好;MN培养基中4mg/L6-BA与0.5mg/LNAA的搭配有利于不定芽形成;琼脂的浓度变化对不定芽分化影响较大,以9g/L琼脂为宜;培养基中添加5~7.5mg/L的AgNO3、0.1~0.5mmol/L的AsA可显著提高不定芽的发生频率和质量。通过不定芽继代培养、生根培养和驯化移栽建立了能够获得较高再生频率的不结球白菜离体再生体系。  相似文献   

10.
向日葵离体再生体系的建立   总被引:1,自引:0,他引:1  
为了建立高效的向日葵离体再生体系,从基因差异、外植体取材、生长素和细胞分裂素浓度、附加物的添加等方面出发,对向日葵愈伤诱导、分化、生根等过程进行了系统优化。结果表明:杂交材料相对于自交材料更容易实现再生;最佳外植体是生长4 d的子叶;最佳愈伤诱导培养基是MS培养基 (MS) +2.0 mg/L 6-苄基腺嘌呤 (6-BA)+0.5 mg/L奈乙酸 (NAA)+1.0 mg/L激动素 (KT),诱导率最高可达100%;最佳分化培养基是MS+0.2 mg/L 6-BA+0.5 mg/L NAA+0.3 mg/L KT+0.3 mg/L硝酸银 (AgNO3)+0.2 g/L活性炭 (AC),芽分化率可达71%;最佳生根培养基是1/2 MS+0.6 mg/L吲哆丁酸 (IBA),生根率最高为77%。方差分析表明,材料基因型、外植体生长时间、激素、AgNO3、AC对向日葵再生呈现显著性影响。  相似文献   

11.
A protocol is presented for direct adventitous shoot organogenesis and complete plant regeneration from seedling-derived explants of pomegranate (Punica granatum L.), a tropical fruit tree. Murashige and Skoog (1962) (MS) medium enriched with 8.9 mumol/L benzyladenine (BA), 5.4 mumol/L naphthaleneacetic acid (NAA) and 10% coconut water (CW) induced adventitious shoot bud differentiation in axenic seedling-derived cotyledons as well as hypocotyl segments. The cotyledons were more responsive than the hypocotyls. Addition of ethylene inhibitors such as AgNO3 (10-40 mumol/L) and aminoethoxyvinylglycine (AVG) (5-15 mumol/L) to the medium markedly enhanced regeneration frequency as well as number of shoots obtained per explant. The promotive effect of AVG and AgNO3 on shoot organogenesis was observed only in cotyledon explants. The regeneration medium containing AgNO3 (20 mumol/L) or AVG (10 mumol/L) induced adventitious shoot buds from 57% or 53% of the cotyledon explants respectively. These shoot buds developed into shoots upon transfer to a regeneration medium without AgNO3 and AVG. The promotive effect of AVG on shoot regeneration was reversed by exogenous application of 20 mumol/L 2-chloroethylphosphonic acid (CEPA), an ethylene releasing compound. On the other hand, shoot regeneration stimulated by AgNO3 was relatively less affected by CEPA. Regenerated shoots were rooted in half-strength MS medium (1/2 MS) containing 0.54 mumol/L NAA. The well rooted plantlets were acclimatized and eventually established in soil.  相似文献   

12.
Summary Improved in vitro tissue culture systems are needed to facilitate the application of transgene technology to the improvement of sugar beet germplasms. Several commercially important sugar beet breeding lines (SDM, 3, 5, 8, 9, 10, 11, HB 526, and CMS 22003) and commercial varieties (Roberta and Gala) were tested for their regeneration capacity through adventitious shoot organogenesis from cotyledons, hypocotyls, root/hypocotyl/shoot transition zone tissues, and leaf lamina and petiole via an intervening callus phase. Callus induction and adventitious shoot regeneration was dependent on genotype and combinations of plant growth regulators. With cotyledon or hypocotyl explants, SDM 3 and 10 showed a better response on adventitious shoot regeneration in medium containing benzyladenine (BA) and 2,3,5-triiodobenzoic acid or 1-naphthaleneacetic acid (NAA) than SDM 11, 5, and 9. Shoot regeneration was obtained from hypocytyl-root or hypocotyl-shoot transition zone tissue in SDM 9, 10, and HB 526 grown on PGo medium supplemented with BA to induce callus, and the regeneration frequency was 25%. Adventitious shoots were also regenerated from leaf explants of SDM 3 and 9 cultured on medium containing NAA for callus induction and BA and NAA to induce shoot regeneration, and in SDM 10 and CSM 22003 cultured on medium containing BA for callus induction and to induce shoot regeneration.  相似文献   

13.
Rapid-cycling fast plants (Brassica rapa; RCBr) is also known as Wisconsin Fast Plant and is widely used in K-12 and undergraduate studies. RCBr has a short generation time (seed-to-seed in 30–60 days), which allows for the completion of experiments in a semester. Previous studies have shown that cotyledonary explants with attached petioles are capable of generating shoots. However, there is no published adventitious shoot regeneration protocol to date. Sterile cotyledonary explants were excised; all edges and petioles were removed. Five-day-old cotyledonary explants produced shoots on a Murashige and Skoog medium containing 1.5 mg/L thiadiazuron (TDZ) and 0.5 mg/L 1-naphthaleneacetic acid (NAA) (FPM I) at a mean rate of 8.8%. This rate increased to 14.8% in explants placed on FPM I medium supplemented with 5.0 mg/L silver nitrate (AgNO3) (SRM 2). The rate increased to 32.5% when 5-day-old explants, excised from the part of the cotyledon nearest to the petiole, were placed adaxial side up on SRM 2 medium. The shoot regeneration rate increased to 44.5% using 4-day-old cotyledonary explants. A shoot regeneration rate of 23% was observed among 9-day-old leaf explants. Shoots from cotyledonary explants were elongated on basal medium with 0.5 mg/L NAA, rooted on basal medium, and later acclimatized. This is the first report of shoot regeneration from cotyledonary explants of rapid-cycling Brassica rapa without pre-existing meristematic tissues.  相似文献   

14.
'早红'草莓高效遗传转化受体系统的建立   总被引:2,自引:0,他引:2  
本文以草莓主栽品种'早红'组培苗离体叶片和叶柄为外植体,进行叶龄、暗培养、植物生长调节剂配比及抗生素敏感性研究,建立草莓高效遗传转化的受体系统.在含3.0 mg/L 6-BA与0.1 mg/L 2,4-D的MS培养基上,30 d叶龄的叶片再生频率高达98.31%,平均每叶片再生芽数5.09个,叶柄切段的再生频率为89.25%,平均每叶柄切段再生芽数4.92个,叶片的再生频率略高于叶柄;不定芽在含0.2 mg/L 6-BA与0.2 mg/L GA_3的MS继代培养基上培养成苗.将生长状态良好的不定芽转至含0.2 mg/L IBA的1/2 MS培养基上生根,生根率达100%,平均生根数量16.27条,平均根长1.85 cm.抗生素敏感性试验表明,草莓外植体适宜的卡那霉素选择压力为25 mg/L,头孢霉素的筛选浓度为300mg/L.本研究建立的再生体系可作为草莓遗传转化的受体系统.  相似文献   

15.
A simple and efficient procedure was developed for in vitro propagation of Solanum aculeatissimum Jacq. using leaf and petiole explants cultured on Murashige and Skoog (MS) medium supplemented with α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). Effects of various plant growth regulators, explant types, carbohydrates, and basal salts on induction of adventitious shoots were also studied. Leaf explants appeared to have better regeneration capacity than petiole explants in the tested media. The highest regeneration frequency (79.33 ± 3.60%) and shoot number (11.33 ± 2.21 shoots per explant) were obtained in leaf explants in MS medium containing 3% sucrose and 0.8% agar, supplemented with 0.1 mg/l NAA and 2.0 mg/l BA, whereas petiole explants were more responsive to 0.1 mg/l NAA and 1.0 mg/l thiadiazuron. Developed shoots rooted best on MS medium with 1.0 mg/l indole acetic acid (IAA), producing 18.33 ± 2.51 roots per shoot. Histological investigation showed that the shoot buds originated mainly from epidermal cells of wounded tissues, without callus formation. The regenerated plantlets were successfully acclimatized in a greenhouse, where over 90% developed into morphologically normal and fertile plants. Results of flow cytometry analysis on S. aculeatissimum indicated no variation in the ploidy levels of plants regenerated via direct shoot formation and showed almost the same phenotype as that of mother plants. This adventitious shoot regeneration method may be used for large-scale shoot propagation and genetic engineering studies of S. aculeatissimum.  相似文献   

16.

Snapdragon (Antirrhinum majus L.) is a popular ornamental and model plant species, and the recently released reference genome could greatly boost its utilization in fundamental research. However, the lack of an efficient genetic transformation system is still a major limiting factor for its full application in genetic and molecular studies. In this study, a simple method for quick regeneration and efficient Agrobacterium-mediated transformation of snapdragon was developed. Cotyledon petiole and hypocotyl explants derived from two-week-old seedlings were cultured on MS media supplemented with 2 mg/L zeatin (ZT), 0.2 mg/L 1-naphthaleneacetic acid (NAA), and 2 mg/L AgNO3, and adventitious shoots were regenerated through organogenesis with an average regeneration of 48.00% and 41.33%, respectively. By contrast, the regeneration frequency was only 22.67% for cotyledon petiole and 25.67% for hypocotyl explants in the absence of AgNO3. Moreover, the application of AgNO3 promoted indirect shoot organogenesis, while direct shoot organogenesis occurred in the absence of AgNO3 from both hypocotyl or cotyledon petiole explants. Agrobacterium-mediated genetic transformation systems were developed with this high-efficient regeneration system. The transformation efficiency has been improved from 0 to 1% through the direct shoot organogenesis to 3 to 4% via the indirect shoot organogenesis. This efficient regeneration and genetic transformation method could be important for future use of snapdragon as a model plant to address some fundamental questions which are hard to be solved by using other model plant species, and to accelerate the breeding process through CRISPR/Cas9 genome editing.

  相似文献   

17.
为了提高辣椒子叶不定芽的伸长率和遗传转化效率,本研究以保加利亚尖椒子叶为外植体,通过正交试验分别对影响保加利亚尖椒子叶不定芽伸长的激素组合以及遗传转化参数进行了优化。结果表明:诱导不定芽伸长的最佳激素组合为0.2mg/LIAA+1.0mg/LGA3+0.1mg/LPBU,不定芽伸长率最高为60%;以5mg/L潮霉素为选择压,预培养时间为4d、共培养时间为2d、侵染时间为20min时,诱导的抗性不定芽比率最高。本研究建立的辣椒再生及遗传转化体系为辣椒转基因研究奠定一定的基础。  相似文献   

18.
目前转基因技术已成为植物定向遗传改良的重要手段,而建立稳定高频的离体再生系统是实现遗传转化的基础和前提.本试验以25 ~30 d苗龄的金养麦(Fagopyrum dibotrys)无菌苗叶片、茎节间、叶柄为外植体进行愈伤组织诱导与植株再生研究.结果表明:叶片在MS +2,4-D 4.0 mg/L +6-BA 1.0 mg/L培养基上愈伤组织诱导率达到89%.茎节间在MS +2,4-D 2.0 mg/L +6-BA 2.0 mg/L培养基上愈伤组织诱导率为87%.叶柄在MS +2,4-D 4.0 mg/L +6-BA 2.0 mg/L+ IBA 0.2 mg/L培养基上的最高诱导率仅为54%.愈伤组织分化不定芽的适宜培养基为MS +6- BA2.0 mg/L +TDZ0.2 mg/L +NAA0.2 mg/L;金荞麦不定芽在1/2 MS +NAA 0.5 mg/L的培养基上生根效果最好.组培再生植株经炼苗后移栽到田间成活率达80%以上,且生长表现正常.高频完整再生体系的建立,为金荞麦进一步遗传操作和扩大药材资源奠定了基础.  相似文献   

19.
以空心菜(Ipomoea aquatica Forsk.)品种‘白骨柳叶’为材料,通过筛选植物外植体和调整培养基激素配比等方法,首次建立了茎秆第一节间为外植体的空心菜离体再生体系。结果表明,在MS基本培养上添加0.05% 的植物组织培养抗菌剂PPM可获得大量空心菜无菌苗;植株子叶和下胚轴的切段均未诱导出不定芽,而茎秆第一节间为外植体能成功诱导出不定芽,诱导成功率为20%,最佳培养基配方为MS+1.0 mg/L 6-BA+0.1 mg/L IAA;不定芽诱导生根的最佳培养基配方为1/2 MS+0.1 mg/L NAA,生根率为100%。诱导成功后,将完整的再生苗移栽至基质土中,成活率可达100%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号