首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To evaluate the effect of and exponential feeding regime on the production of epoxide hydrolase (EH) enzyme in recombinant Yarrowia lipolytica in comparison to a constant feed strategy. Methods and Results: An exponential feed model was developed and fermentations were fed at six different exponential rates. A twofold increase in EH productivity and a 15% increase in volumetric EH activity was obtained by applying exponential glucose feed rates in fed‐batch cultivation. These responses were modelled to obtain a theoretical optimum feed rate that was validated in duplicate fermentations. The model optimum of 0·06 h?1 resulted in a volumetric EH activity of c. 5500 U l?1 h?1 and a maximum activity of 206 000 U l?1. This correlated well with model predictions, with a variance of <10%. Conclusions: The use of an exponential feed strategy at a rate of 0·06 h ? 1 yielded best results for all key responses which show a clear improvement over a constant feed strategy. Significance and Impact of the Study: The study was the first evaluation of an exponential feed strategy on recombinant Y. lipolytica for the production of EH enzyme. The results suggest a strategy for the commercial production of a valuable pharmaceutical enzyme.  相似文献   

2.
A microorganism with the ability to catalyze the resolution of racemic phenyloxirane was isolated and identified as Aspergillus niger SQ-6. Chiral capillary electrophoresis was successfully applied to separate both phenyloxirane and phenylethanediol. The epoxide hydrolase (EH) involved in this resolution process was (R)-stereospecific and constitutively expressed. When whole cells were used during the biotransformation process, the optimum temperature and pH for stereospecific vicinal diol production were 35°C and 7.0, respectively. After a 24-h conversion, the enantiomer excess of (R)-phenylethanediol produced was found to be >99%, with a conversion rate of 56%. In fed-batch fermentations at 30°C for 44 h, glycerol (20 g L−1) and corn steep liquor (CSL) (30 g L−1) were chosen as the best initial carbon and nitrogen sources, and EH production was markedly improved by pulsed feeding of sucrose (2 g L−1 h−1) and continuous feeding of CSL (1 g L−1 h−1) at a fermentation time of 28 h. After optimization, the maximum dry cell weight achieved was 24.5±0.8 g L−1; maximum EH production was 351.2±13.1 U L−1 with a specific activity of 14.3±0.5 U g−1. Partially purified EH exhibited a temperature optimum at 37°C and pH optimum at 7.5 in 0.1 M phosphate buffer. This study presents the first evidence for the existence of a predicted epoxide racemase, which might be important in the synthesis of epoxide intermediates.  相似文献   

3.
Enantio-convergent hydrolysis of racemic styrene oxides was achieved to prepare enantiopure (R)-phenyl-1,2-ethanediol by using two recombinant epoxide hydrolases (EHs) of a bacterium, Caulobacter crescentus, and a marine fish, Mugil cephalus. The recombinant C. crescentus EH primarily attacked the benzylic carbon of (S)-styrene oxide, while the M. cephalus EH preferentially attacked the terminal carbon of (R)-styrene oxide, thus leading to the formation of (R)-phenyl-1,2-ethanediol as the main product. (R)-Phenyl-1,2-ethanediol was obtained with 90% enantiomeric excess and yield as high as 94% from 50 mM racemic styrene oxides in a one-pot process.  相似文献   

4.
The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric acid (CA) and isocitric acid (ICA) under an excess of carbon source and several conditions of growth limitation. Depending on the carbon source used, Y. lipolytica strains produce a mixture of CA and ICA in a characteristic ratio. To examine whether this CA/ICA product ratio can be influenced by gene–dose-dependent overexpression of aconitase (ACO)-encoding gene ACO1, a recombinant Y. lipolytica strain was constructed containing multiple copies of ACO1. The high-level expression of ACO in the ACO1 multicopy integrative transformant resulted in a shift of the CA/ICA product pattern into the direction of ICA. On sunflower oil, a striking increase of the ICA proportion from 35–49% to 66–71% was observed compared to wild-type strains without influencing the total amount of acids (CA and ICA) produced. On glycerol, glucose or sucrose, the ICA proportion increased only moderately from 10–12% to 13–17%. This moderate shift into the direction of ICA was also observed in an icl1-defective strain.  相似文献   

5.
The inadequate supply of oxygen to biomass is a critical factor to the productivity of most aerobic submerged fermentations. This happens because oxygen is sparingly soluble in the aqueous media. The use of a second liquid phase of perfluorocarbon (PFC), an oxygen-carrying compound, in the culture medium can increase the availability of oxygen to the microorganisms. The effect of perfluorodecalin on Yarrowia lipolytica cultures was investigated in shake-flask cultures. It was found that the specific growth rate of Y. lipolytica, a strictly aerobic yeast, increases with increasing PFC concentration. Extracellular lipase production was increased with 20% (v/v) of PFC and agitation of 250 rev/min. It was shown that the PFC presence benefitted lipase production and not just its secretion to the extracellular medium.  相似文献   

6.
Summary The mating type gene MA TA of the dimorphic yeast Yarrowia lipolytica was cloned. The strategy used was based on the presumed function of this gene in the induction of sporulation. A diploid strain homozygous for the mating type B was transformed with an integrative gene bank from an A wild-type strain. A sporulating transformant was isolated, which contained a plasmid with an 11.6 kb insert. This sequence was rescued from the chromosomal DNA of the transformant and deletion mapping was performed to localize the MAT insert. The MAT gene conferred both sporulating and non-mating phenotypes on a B/B diploid. A LEU2 sequence targeted to this locus segregated like a mating type-linked gene. The A strain did not contain silent copies of the MAT gene.  相似文献   

7.
An enantioconvergent biotransformation of racemic styrene oxide by using two recombinant microbial epoxide hydrolases (EHs) in one pot has been investigated to prepare enantiopure vicinal diols. The recombinant whole cell possessing EH gene from Aspergillus niger LK or Rhodotorula glutinis exhibited a complementary enantioselectivity and regioselectivity, compared to the recombinant cell containing Caulobacter crescentus EH gene. When two recombinant microbial EHs were used in combination, 1.3 g of enantiopure (R)-1,2-phenylethandiol with more than 90% enantiopurity and 95% overall yield was obtained from 1.2 g of racemic styrene oxide in a preparative-scale batch enantioconvergent biotransformation.  相似文献   

8.
【目的】构建一个适用于Candida amazonensis抗性标记可重复使用的FLP/FRT基因敲除系统,并通过敲除C.amazonensis的丙酮酸脱羧酶基因(Pyruvate decarboxylase,PDC)对该系统进行初步验证。【方法】以gfpm(绿色荧光蛋白基因)为报告基因,通过添加相应诱导剂评估Spathaspora passalidarum来源启动子(SpXYLp、SpMAL6p、SpMAL1p、SpGAL1p)和Saccharomyces cerevisiae来源Sc GAL1p启动子在C.amazonensis中的诱导调控性能。选择严格诱导型启动子调控FLP重组酶的表达,并在FLP表达盒和潮霉素(Hygromycin B)抗性标记基因(hphm)两端添加同向重复的FRT位点,以PDC基因作为靶基因构建敲除盒PRFg HRP,转化宿主菌C.amazonensis CBS 12363,筛选得到阳性转化子后,通过添加诱导剂,表达FLP重组酶,实现FRT位点间片段切除。【结果】诱导调控实验表明启动子SpGAL1p(受半乳糖诱导)和SpMAL1p(受麦芽糖诱导)是适用于C.amazonensis的严格诱导型启动子。以SpGAL1p调控FLP基因表达,构建的敲除盒PRFg HRP成功转化宿主菌,获得阳性转化子C.amazonensis PDC01,通过添加半乳糖诱导,成功切除基因组中FLP表达盒和抗性标记盒,获得突变株C.amazonensis PDC02。【结论】首次建立了一个适用于C.amazonensis抗性标记可重复使用的FLP/FRT基因敲除系统,并利用该系统成功敲除了C.amazonensis内的PDC基因,为进一步利用代谢工程改造C.amazonensis酵母奠定了良好基础。  相似文献   

9.
This paper provides an approach for optimizing the cell density (Xc) and dilution rate (D) in a chemostat for a Pichia pastoris continuous fermentation for the extracellular production of a recombinant protein, interferon (INF-). The objective was to maximize the volumetric productivity (Q, mg INF- l–1 h–1), which was accomplished using response surface methodology (RSM) to model the response of Q as a function of Xc and D within the ranges 150 Xc 450 g cells (wet weight) l–1 and 0.1 mD0.9 m (m=0.0678 h–1, the maximum specific growth rate obtained from a fed-batch phase controlled with a methanol sensor). The methanol and medium feed rates that resulted in the desired Xc and D were determined based on the mass balance. From the RSM model, the optimal Xc and D were 328.9 g l–1 and 0.0333 h–1 for a maximum Q of 2.73 mg l–1 h–1. The model of specific production rate (, mg INF- g–1 cells h–1) was also established and showed the optimal Xc=287.7 g l–1 and D=0.0361 h–1 for the maximum (predicted to be 8.92×10–3 mg–1 g–1 h–1). The methanol specific consumption rate (, g methanol g–1 cells h–1) was calculated and shown to be independent of the cell density. The relationship between and (specific growth rate) was the same as that discovered from fed-batch fermentations of the same strain. The approach developed in this study is expected to be applicable to the optimization of continuous fermentations by other microorganisms.  相似文献   

10.
TheAspergillus niger gene encoding phytase(phyA) was expressed in canola (Brassicanapus). Phytase expression is controlled by the seed-specificcruciferin (CruA) promoter. Secretion of the enzyme was aimed for byincorporating the cruciferin signal peptide in the expression construct.Transgenic canola lines were generated by Agrobacteriummediated transformation using nptII as the selectable marker. Ninety-fiveindependent transgenic events were generated. Phytase expression in the T1seedsranged from 0 to 600 U/g seed. Single-copy lines were selected(based on segregation for kanamycin resistance, phytase expression and Southernanalyses) from originally multi-copy transgenic lines. Phytase was expressed inthese sub-lines up to 103 U/g. Expression levels were monitoredthrough an additional 3–4 generations (in the greenhouse and in thefield)and the accumulation of phytase appeared to be fairly stable. In the expressionrange studied, phytase expression was gene-dosage dependent.  相似文献   

11.
A gene (axe) encoding the AXE thermostable esterase in Thermobifida fusca NTU22 was cloned into a Yarrowia lipolytica P01g host strain. Recombinant expression resulted in extracellular esterase production at levels as high as 70.94 U/ml in Hinton flask culture broth, approximately 140 times higher than observed in a Pichia pastoris expression system. After 72 h of fermentation by the Y. lipolytica transformant in the fed-batch fermentor, the fermentation broth accumulated 41.11 U/ml esterase activity. Rice bran, wheat bran, bagasse and corncob were used as hydrolysis substrates for the esterase, with corncob giving the best ferulic acid yield. The corncob was incubated with T. fusca xylanase (Tfx) for 12 h and then with the AXE esterase for an additional 12 h. Ferulic acid accumulated to 396 μM in the culture broth, a higher concentration than with esterase alone or with Tfx and esterase together for 24 h.  相似文献   

12.
Fusarium venenatum A3/5 was transformed using the Aspergillus niger expression plasmid, pIGF, in which the coding sequence for the F. solani f. sp. pisi cutinase gene had been inserted in frame, with a KEX2 cleavage site, with the truncated A. niger glucoamylase gene under control of the A. niger glucoamylase promoter. The transformant produced up to 21 U cutinase l−1 in minimal medium containing glucose or starch as the primary carbon source. Glucoamylase (165 U l−1 or 8 mg l−1) was also produced. Both the transformant and the parent strain produced cutinase in medium containing cutin.  相似文献   

13.
Shi X  Feng M  Zhao Y  Guo X  Zhou P 《Biotechnology letters》2008,30(1):181-186
A recombinant Bacillus subtilis strain (KN25) was generated for the large-scale preparation of catalase. The B. subtilis katA gene encoding for catalase was cloned into the shuttle vector PRB374, downstream of the constitutively active vegII promoter, followed by transformation of the B. subtilis strain WB600 with the plasmid. The transformant strain, KN25 secretes high levels (3,500 U/ml) of catalase, which facilitates its purification. Three simple purification steps yielded nearly homogeneous catalase, with ∼70% recovery. The purified recombinant catalase has a specific activity of 34,600 U/mg under optimal conditions, and is more resistant to acidic conditions than bovine liver catalase.  相似文献   

14.
Aspergillus niger hyphae were found to grow with unliquefied potato starch under aerobic conditions, but did not grow under anaerobic conditions. The raw culture ofA. niger catalyzed saccharification of potato starch to glucose, producing approximately 12 g glucose/L/day/ The extracellular enzyme activity was decreased in proportion to incubation time, and approximately 64% of initial activity was maintained after 3 days. At 50°C,A. niger hyphae growth stopped, while the extracellular enzyme activity peaked. On the basis of theA. niger growth property and enzyme activity, we designed a serial bioreactor system composed of four different reactors. Fungal hyphae were cultivated in reactor I at 30°C, uniquefied starch was saccharified to glycose by a fungal hyphae culture in reactors II and III at 50°C, and glucose was fermented to ethanol bySaccharomyces cerevisiae in reactor IV. The total glucose produced by fungal hyphae in reactor I and saccharification in reactor II was about 42 g/L/day. Ethanol production in reactor IV was approximately 22 g/L/day, which corresponds to about 79% of the theoretical maximum produced from 55 g starch/L/day.  相似文献   

15.
Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages, such as beer and wine. In the brewers’ yeast Saccharomyces cerevisiae, the major part of these esters is formed by two alcohol acetyltransferases, Atf1 and Atf2. In this paper, the existence of orthologues of these S. cerevisiae alcohol acetyltransferases in several ascomycetous fungi was investigated. Bioinformatic analysis of sequenced fungal genomes revealed the presence of multiple orthologues. The Saccharomyces sensu stricto yeasts all have two genes coding for orthologues. More distantly related fungi like Saccharomyces castelii, Candida glabrata, Kluyveromyces waltii and Kluyveromyces lactis have only one orthologue in their genome. The homology between the identified proteins and the S. cerevisiae alcohol acetyltransferases suggests a role for these orthologues in the aroma-active ester formation. To verify this, the K. lactis orthologue KlAtf was cloned and expressed in S. cerevisiae. Gas chromatographic analysis of small-scale fermentations with the transformant strains showed that, while S. cerevisiae ATF1 overexpression resulted in a substantial increase in acetate ester levels, S. cerevisiae ATF2 and K. lactis ATF overexpression only caused a moderate increase in acetate esters. This study is the first report of the presence of an ester synthesis gene in K. lactis.  相似文献   

16.
The alkaline protease structural gene (ALP1 gene) was isolated from both the genomic DNA and cDNA of Aureobasidium pullulans 10 by inverse PCR and RT-PCR. An open reading frame of 1248 bp encoding a 415 amino-acid protein with calculated molecular weight of 42.9 kDa was characterized. The gene contained two introns, which had 54 bp and 50 bp, respectively. The promoter of ALP1 gene was located from -62 to -112 and had two CCAAT boxes and one TATA box. The terminator of ALP1gene contained the sequence with a hairpin structure (AAAAAGTT TGGTTTTT). The protein sequence deduced from ALP1 gene exhibited 55.24%, 50.35%, and 31.68% identity with alkaline proteases from Aspergillus fumigatus, Acremonium chrysogenum, and Yarrowia lipolytica, respectively. The protein was found to have the conserved serine active site and histidine active site of serine proteases in the subtilisin family. The recombinant A. pullulans alkaline protease produced in Y. lipolytica formed clear zones on the double plates with 2% casein and alkaline protease activity in the supernatant of the recombinant Y. lipolytica culture was detected, suggesting that the cloned ALP1 gene is expressed in Y. lipolytica and the expressed alkaline protease is secreted into the medium.  相似文献   

17.
Two open reading frames denoted as cpcE and cpcF were cloned and sequenced from Synechococcus sp. PCC 6301. The cpcE and cpcF genes are located downstream of the cpcB2A2 gene cluster in the phycobilisome rod operon and can be transcribed independently of the upstream cpcB2A2 gene cluster. The cpcE and cpcF genes were separately inactivated by insertion of a kanamycin resistance cassette in Synechococcus sp. PCC 7942 to generate mutants R2EKM and R2FKM, respectively, both of which display a substantial reduction in spectroscopically detectable phycocyanin. The levels of - and -phycocyanin polypeptides were reduced in the R2EKM and R2FKM mutants although the phycocyanin and linker genes are transcribed at normal levels in the mutants as in the wild type indicating the requirement of the functional cpcE and cpcF genes for normal accumulation of phycocyanin. Two biliprotein fractions were isolated on sucrose density gradient from the R2EKM/R2FKM mutants. The faster sedimenting fraction consisted of intact phycobilisomes. The slower sedimenting biliprotein fraction was found to lack phycocyanin polypeptides, thus no free phycocyanin was detected in the mutants. Characterization of the phycocyanin from the mutants revealed that it was chromophorylated, had a max similar to that from the wild type and could be assembled into the phycobilisome rods. Thus, although phycocyanin levels are reduced in the R2EKM and R2FKM mutants, the remaining phycocyanin seems to be chromophorylated and similar to that in the wild type with respect to phycobilisome rod assembly and energy transfer to the core.  相似文献   

18.
Enhanced 2,3-butanediol (BD) production was carried out by Klebsiella pneumoniae SDM. The nutritional requirements for BD production by K. pneumoniae SDM were optimized statistically in shake flask fermentations. Corn steep liquor powder and (NH4)2HPO4 were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform fed-batch fermentations with K. pneumoniae SDM. BD production was then studied in a 5-l bioreactor applying different fed-batch strategies, including pulse fed batch, constant feed rate fed batch, constant residual glucose concentration fed batch, and exponential fed batch. The maximum BD concentration of 150 g/l at 38 h with a diol productivity of 4.21 g/l h was obtained by the constant residual glucose concentration feeding strategy. To the best of our knowledge, these results were new records on BD fermentation. Cuiqing Ma and Ailong Wang contributed equally to this work.  相似文献   

19.
The abundance of pelagic invertebrate predators in relation to turbidity and depth gradients in Lake Hiidenvesi (southern Finland) were studied. In the shallow (<5 m) and the most turbid (up to 75 NTU) part of the lake, the community of invertebrate predators consisted of cyclopoid copepods (max biomass >500 μg dw l−1) and Leptodora kindtiii (Focke) (17 μg dw l−1), while in the less turbid (10–40 NTU) stratifying area Chaoborus flavicans (Meigen) dominated (max 146 μg dw l−1). In the temporarily stratifying and moderately turbid basin Chaoborus and small-bodied invertebrate predators co-existed. Mysis relicta (Lovén) occurred only in the stratifying area (max 15 μg dw l−1). The results suggested that both water depth and turbidity contributed to the community structure of Chaoborus flavicans. Depth great enough for stratification was of special importance and its effect was amplified by elevated turbidity, while high turbidity alone could not maintain chaoborid populations. Mysis relicta also requires a hypolimnetic refuge but is more sensitive to low oxygen concentrations and may therefore be forced to the epilimnion where it is vulnerable to fish predation. Cyclopoids as rapid swimmers can take advantage at elevated turbidity levels and coexist in high biomass with fish even in shallow water. Leptodora kindtii can form high biomass despite planktivorous fish providing that turbidity exceeds 20 NTU. The results demonstrated that depth and water turbidity can strongly regulate the abundance and species composition of invertebrate predators. These factors must thus be taken into account when applying food web management, which aims to reduce phytoplankton biomass by depressing planktivorous fish.  相似文献   

20.
Batch fermentations for xylitol production were conducted using Candida boidinii (BCRC 21432), C. guilliermondii (BCRC 21549), C. tropicalis (BCRC 20520), C. utilis (BCRC 20334), and P. anomala (BCRC 21359) together with a mixture of sugars simulating lignocellulosic hydrolysates as the carbon source. C. tropicalis had the highest bioconversion yield (YP/S) of 0.79 g g−1 (g xylitol·g xylose−1) over 48 h. Additional fermentations with C. tropicalis achieved YP/S values of 0.6 and 0.39 g g−1 after 96 and 72 h using urea and soybean meal as the nitrogen sources, respectively. Ethanol and arabitol were also produced in all fermentation. Xylitol in the fermentation broth was recovered by cross-flow ultrafiltration. With prior application of 2 mg polydiallyl dimethylammonium chloride l−1 on the membrane surface, protein in the permeate was reduced from 7.1 to 1.5 mg l−1 after 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号